
Contents

1 Introduction 3

2 Reinforcement learning 6

2.1 Notation . 6

2.2 Basic concepts . 7

2.3 Classification of RL algorithms 8

2.4 Deep reinforcement learning . 10

2.5 Related works . 10

3 Agent models 17

3.1 DQN . 17

3.2 DDPG . 19

3.3 Baselines . 21

4 Environment 23

4.1 MovieLens offline . 24

4.2 MovieLens . 26

5 Discussion 28

6 Conclusion 29

Bibliography 30

2

1 Introduction

People confront the problem of vast space of options and choices now more than

at any time in the past. We have enormous storages with all kinds of physical

products and even more informational products like music, videos, knowledge,

software, and services. Recommendation systems (RS) are used to facilitate the

search in that space of goods and services.

Known common approaches to create RS are based on the information about

the users, the products and their interactions, sometimes additional spatiotem-

poral information about the sequences of purchases is added to the model.

Various techniques, such as content-based collaborative filtering [1], matrix

factorization methods [2, 3], logistic regression, factorization machines [4], con-

textual bandits [5] provide good performance in many cases.

Deep learning models are actively used in the construction of scalable RS.

To grasp the landscape of different models you can consult this review [6].

Usually, the recommendation process is viewed as a static, in other words,

we train a model on some log history dataset and then serve it for some period

of time without modifications. In order to update the model to account for

users’ and items’ evolution in time, we need to retrain it. In that case, we do

not model the influence of the interaction between user and RS and optimize

only for a short-term reward (Compare: ’will a user like this product ?’ vs

’will our RS provide agreeable user experience and increase overall usage of the

service by a user ?’).

The recent studies try to enter in the loop of recommendations to account for

the effect of user-RS interaction and the evolution of user preferences through

time. Treating the information of user-item interactions as a sequential decision-

3

making problem is difficult but has several advantages.

By casting the problem of recommendations into Reinforcement Learning

(RL) framework we hope to achieve several important benefits.

Firstly, we do not discard change in user’s preference w.r.t. time. Secondly,

we can optimize not only the immediate reward/feedback of the users to the

item but also the longterm contributions that our recommendation policy can

achieve.

Let’s consider the following motivational example. We have an e-commerce

company of event sales. They fulfill the supplier’s needs to quickly sell excess

inventory and now they cooperate with more than 6000 brands and make 54000

sales a year.

Figure 1: Vente Privee web page

The set of available products change about 10% every week. This recurrent

problem, also known as cold start, can be partially solved by using product and

user embeddings to recommend similar products. We can train the model of

deep matrix factorization with embeddings in the first place and then retrain

it. It might not be very convenient but will solve that problem nevertheless.

Another concern is that in reality, our ultimate goal is to optimize life-long

4

user content and not only a current reward, i.e. the preferences of users for

each product at the moment.

We do not want to consider the task of recommendations as a static problem.

The goal is to have a dynamic, online learning model. The sequential interaction

between a service and a user can be modeled as a variant of a Markov Decision

Process. Then by leveraging Reinforcement Learning, it might be possible to

learn a good recommendation policy[7]. In other words that model can enter

the circle of model-user interaction and integrate the understanding that the

actions of the model dynamically affect user behavior.

At any time we work only with users immediate search and rank items

accordingly. In that work, we tried to cast the problem of recommendation

as a sequential decision problem (more precisely as a Markov Decision Process

MDP) and solve it with Reinforcement Learning techniques.

5

2 Reinforcement learning

2.1 Notation

Many reinforcement learning problems can be defined as a policy search in a

Markov decision process (MDP), defined as a tuple (S, A, r, p, γ).

In the recommendation task the state space S and the action space A are

assumed to be continuous as we use embeddings for items and users. State

transition probability p : S × A × S → [0, inf) represent the probability density

of the next state st+1 ∈ S given the current state st ∈ S and action at ∈ A.

The environement outputs a reward r : S × A → R on each transition. In

Figure 2 we can see more general view, where rewards can be viewed as a part

of observation.1 Policy of an agent is a function π(at|st) that gives distribution

over actions given a current state.

Markovian assumption p(st+1|st, at, ..., s1, a1) = p(st+1|st, at) means that the

next state depends only on the previous state and the chosen action.

Figure 2: Agent interaction with environement

Agent proceeds as follows: starting at some initial state s0 at each step agent

chooses an action a ∼ π(at|st) and receives the reward rt from the environement.

The goal of the agent is to maximize the cumulative reward Gπ(s) = �
t γtrt

1DeepMind’s RL course https://www.youtube.com/playlist?list=PLqYmG7hTraZDNJre23vqCGIVpfZ_
K2RZs

6

Sometimes it is important to distinguish between observation and state.

A state s is a complete description of the state of the world. There is no

information about the world which is hidden from the state. An observation

o is a partial description of a state, which may omit information. [8]. But in

many articles authors will use them interchangeably. In this work we refer to

the input/observation of the agent as state s.

One more particular moment will concern the representation of the state

that the agent will consume. Without the loss of generality, we can say that

an agent will take the state/observation provided by the environment by using

some preprocessing of it (e.g. taking several previous states).

2.2 Basic concepts

In general environment transitions and the policy are stochastic.

P (τ |π) = ρ0
T−1�

t=0
P (st+1|st, at)π(at|st) (1)

And expected return can be computed as:

J(π) =
�

τ
P (τ |π)R(τ) = Eτ∼π[R(τ)] (2)

Our final problem is to find an optimal policy:

π∗ = argmaxπJ(π) (3)

We can optimize parametric policy directly with policy optimization methods

or we can express it with value or action-value functions.

Value function V π(s) give an expected return if you start in state s and

7

follow the policy π

V π(s) = Eτ∼π[R(τ)|s0 = s] (4)

Action-Value function Qπ(s, a) give an expected return if you start in state

s, take arbitrary action a and follow the policy π aftewards

Qπ(s, a) = Eτ∼π[R(τ)|s0 = s, a0 = a] (5)

Optimal Value function and Action-Value function will be a fixed

points of the Bellman equations:

V π(s) = Ea∼πs�∼P [r(s, a) + γV π(s�)] (6)

Qπ(s, a) = Es�∼P [r(s, a) + γEa�∼π[Qπ(s�, a�)]] (7)

2.3 Classification of RL algorithms

This classification can be useful to better understand the variety of approaches

and tasks.

Figure 3: Classification of RL algorithms

It is not a complete classification but it gives an idea of the main features

8

of the algorithms. Let’s discuss some of them and explain which features are

more suited for the task of recommendation.

2.3.1 Model Based vs Model Free

One of the most important branching points in an RL algorithm is the question

of whether the agent has access to (or learns) a model of the environment. By a

model of the environment, we mean a function which predicts state transitions

and rewards. Algorithms which use a model are called model-based methods,

and those that don’t are called model-free.

In that work, we use model-free agents to interact with generated RS envi-

ronments.

2.3.2 Q-learning vs Policy optimization

In Policy optimization methods we represent a policy explicitly as πθ(a|s) and

optimize it directly on some performance objective J(πθ)

In Q-Learning methods we learn an approximator of Qθ(s, a) for optimal

action-value function Q∗
θ(s, a). The corresponding policy is a(s) = argmaxaQθ(s, a)

2.3.3 Off-policy vs On-policy

Off-policy can use the data collected at any point during training regardless of

the behavior policy.

On-policy can only use a history obtained under the current policy with

fixed parameters. After an update, we should create new trajectories.

In RS case the interactions with the users are costly and usually, there are

plenty of historical logs obtained under previous versions of the production RS.

Thus we tend to prefer Off-policy variants of the algorithms.

9

2.4 Deep reinforcement learning

For problems with huge state and action spaces, it is practical to use deep

neural networks as a function approximators for policy, value or action-value

functions. An introduction to deep reinforcement learning [9, 8]

2.5 Related works

We have defined notation, basic concepts and classification of methods of the

reinforcement learning framework and now we will look at some examples of

those spaces for specific recommendation tasks.

The amount of efforts invested in RL applications beyond ATARI games

[10], Poker or Go is increasing. There was enough progress to stabilize the

learning and improve sample efficiency for RL to become applicable in other

areas like RS. In this section we will consider several recent works with promising

approaches.

2.5.1 List-wise recommendations

To provide list-wise recommendations [11] it is possible to model a state space as

a list of N last interacted items and an action space as a list of items. To make

reward less sparse the authors proposed 3 different rewards skip/click/order.

Each ai is an embedding of product in some space or a feature vector because

working with indices of items and users don’t allow a policy to capture useful

patterns efficiently. List-wise approach can provide users with diverse options.

More formally,

• State space S: A state st = {s1
t , · · · , sN

t } ∈ S is defined as the browsing

history of a user, i.e., previous N items that a user browsed before time

10

t.

• Action space A: An action at = {a1
t , · · · , aK

t } ∈ A

• Reward R. The agent receives immediate reward r(st, at) according to

the user’s feedback on each action in the list and a chosen aggregation

rule, i.e. simple sum of rewards or weighted by position.

• Transition probability P: Transition probability p(st+1|st, at) defines

the probability of state transition from st to st+1 when RA takes action

at. If user skips all the recommended items, then the next state st+1 = st;

while if the user clicks/orders part of items, then the next state st+1

updates.

• Discount factor γ: γ ∈ [0, 1] defines the discount factor when we mea-

sure the present value of future reward.

To handle large and dynamic state and action spaces they used Actor-Critic

framework trained with DDPG procedure[12]. Given a state actor outputs

parameters of a scoring function. The agent scores all items and selects the

ones with the highest score without repetitions. Critic estimates the value of

action for a given state.

For evaluation, they created Online Environment Simulator to define the

reward for the state-action pairs that were not in the ground truth data. It is

possible to build this simulator from a given sequential dataset.

In the testing phase model parameters are updated continuously and reset

before each new session.

11

2.5.2 DRL with Explicit User-Item Interactions Modeling

(Huawei)

Interesting statistics[13] that show the influence of the dynamic of the sequential

interaction process between user and RS is the average rating of items rated

after n consecutive positive (negative) ratings. Figure 4 shows significant

dependence.

Figure 4: Average ranking depending from the number of precious consecutive
rewards of the same type. We can observer strong influence of several bad rated
interactions on the next rate.

The approach to define underlined MDP is similar to the paper with list-wise

recommendations:

• States S - the representation of user’s positive interaction history and

her demographic information.

• Actions A - a ∈ Rk is a continuous parameter that will score each item

it ∈ Rk

• Transitions if interaction was positive it will be added to a user state

• Reward R(s, a) click / not click / rating

There are 2 main differences in comparison to previous work:

12

• State representation module takes the N previous items and computes

their interactions with the user and between items, thus modeling the

user-item interactions implicitly.

• During the training procedure we compute the score of the items with

weights given by actor, but the critic network receives the output of the

policy network directly.

Figure 5: DRR framework

In this study, authors proposed a variant of evaluation RL recommender

system using standard datasets such as MovieLens(100k), Yahoo! Music (R3),

MovieLens(1M). However, their papers lack a precise description of the evalua-

tion procedure. It is not clear how they split interactions by sessions and their

shuffling procedure.

1. Offline evaluation: for a given session Sj agent only recommends items

that appear in that session I(Sj). After that agent observe reward rt =

R(st, at) normalized to [−1, 1], remove recommended item from the can-

didate set I(Sj), update state and continue.

2. Online simulator: they trained Probabilistic Matrix Factorization (PMF)

model on the whole dataset as the environment to be able to predict an

item’s feedback that the user never rates before.

13

Metrics used are Precision@k and NDCG@k for offline evaluation. And the

total accumulated rewards for simulated online evaluation.

2.5.3 Top-K off-policy REINFORCE (Youtube)

In this work[7] researchers tried to come up with an approach to use huge

quantities of logged implicit feedback that were collected under other recom-

mendation policies. In order to avoid a bias in the estimation of the gradient

for the policy gradient method they proposed Off-Policy correction.

It is possible to optimize the expected cumulative reward maxπEτ∼πR(τ),

where R(τ) = �|τ |
t=0 r(st, at) w.r.t to the policy parameters using gradient derived

analytically with "log-trick"

Eτ∼πθ
[R(τ)∇θlogπθ(τ)] ≈ �

τ∼πθ




|τ |�

t=0
Rt∇θlogπθ(at|st)


 (8)

That estimator is biased if the historical policy β from which we take trajectories

τ is not equal to the policy of an agent πθ. And this is the case of RS, because

we have a lot of logs from previous versions of other RS. Importance Sampling

(IS) is a standard way of correcting that bias.

�

τ∼β




|r|�

t=0

πθ(at|st)
β(at|st)

Rt∇θlogπθ(at|st)

 (9)

The drawback of that approach is that it will increase variance. There are

several options to control it : Weight Capping[7], Normalized Importance Sam-

pling[7], Trusted Region Policy Optimization (TRPO).

To make list-wise recommendations they assumed that the expected reward

of a set of non-repetitive items equals to the sum of rewards of each item. They

14

generated the action by independently sampling according policy πθ

αθ(a|s) = 1 − (1 − πθ(a|s))K (10)

is the probability for item a to appear in a final recommendation of size K. We

change πθ to αθ.

Thus, we can rewrite the gradient:

�

τ∼β




|r|�

t=0

πθ(at|st)
β(at|st)

∂α(at|st)
∂π(at|st)

Rt∇θlogπθ(at|st)

 (11)

State is a vector St ∈ Rn, actions at each time step is embedded to ua ∈ Rm.

To model a state transition St+1 = f(St, at) they used RNN (CFN). RNN will

output next state St+1, after processing some previous actions, then we can

compute the probability of actions using softmax over scores that is an inner

product sT va where va ∈ Rn is another embedding of the item.

Figure 6: Policy network

To estimate β(a|s) we can use the same architecture of a policy network.

But that softmax will be over a different set of possible items from log.

It is computationally demanding to compute full softmax over all items

15

available for recommendations at YouTube, so the researchers avoid that by

using fast nearest neighbor algorithm[14] to extract several items with the most

probability mass according to score and run small softmax on them.

Production experiments have shown small but statistically significant lift in

ViewTime 0.07%. The good feature was that the agent policy diverged from

the behavior policy and gave more probability to rare items without loss in

observed metrics.

16

3 Agent models

In this section, we will describe our agents used for the experiments.

3.1 DQN

First, we adapt basic Deep Q-Network (DQN)[15] to make recommendations.

The difference from ATARI settings is that we have a set of available items that

changes potentially each step. And we also want to recommend several items

from that list.

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
Initialise sequence s1, A1 = a1, ..., aN1

for t = 1, T do
With probability � select a random action at = {i1, ..., iK}
otherwise select top K items by argmaxiQθ(st, ai)
Execute action at in emulator and observe reward rt, state st+1 and pos-

sible items At+1
Store transition (st, At(at), rt, st+1, At+1) in D
Sample random minibatch of transitions from D :

(sj, Aj(aj), rj, sj+1, Aj+1)

Set yj = rj + γ
�K

k=1 maxa�
k
Qθtarget

(sj+1, a�
k)

Perform a gradient descent step on
�
yj − �K

k=1 Qθ(sj, ajk
)
�2

update θtarget = θ each M steps
end for

At each step, based on the current state St, the agent will score every item

from possible items set At and select K items with maximal Q(St, ai). Then

environment will give reward Rt+1, the next state St+1 and possible items for

the next step At+1. Tuple (St, at, Rt+1, St+1, At+1) is saved to the replay buffer.

17

Figure 7: Action-Value function for DQN agent. We cannot make outputs for
each action, because the action space is changing and it might be big

Then network weights are optimized by SGD to minimize the loss:

[Rt+1 + γ
�

a�
Qθtarget

(St+1, a�) − �

a∈at

Qθ(St, a)]2

Note that to use list-wise recommendations we use the sum of Q-values for

each action in the recommendation. And we also take K max items by Q-value

at next state St+1

We used 2 FC layers with 200 and 100 hidden units and relu activation.

Learning rate is 1e − 4 and γ = 0.9. Optimized by Adam.

Action is chosen with �-greedy strategy, that gives random items with prob-

ability �.

The main drawback of that approach is that we need to score every item

using one feedforward pass hrough neural network. It is very computationally

expensive if we have a lot of items to score. So we need another approach.

18

3.2 DDPG

Deep Deterministic Policy Gradient is an off-policy algorithm that scales well

with huge action spaces. There are two parts: actor that model deterministic

policy a(s) and critic that approximate action-value function Q(s, a).

Actor network models state-specific scoring function fθπ : st → wt Then for

each position i in the recommendation vector we take the item that maximize

scorei = wk
t iT

i) without repetition.

Critic takes state St and action at and computes Q(St, at).

Optimal policy should satisfy:

a∗(s) = arg max
a

Q∗(s, a) (12)

Using that fact we can avoid computing max over action-values of each item as

in DQN, instead we will just use Q(s, a(s)).

Critic minimizes mean-squared Bellman error (the difference between boot-

strapped action-value and current action-value)

L = E
�
(Q(s, a) − (r + γ ∗ Qtarget(s�, atarget(s�))2�

(13)

Actor’s weights are also updated with gradient descent to maximaze:

max
θ

E[Q(s, aθ(s))] (14)

19

Figure 8: DDPG

Algorithm 2 Deep Deterministic Policy Gradient
Initialize replay memory D to capacity N
Initialize action-value function Q with random weights
Set target parameters θtarget ← θ, φtarget ← φ
Initialise sequence s1, A1 = a1, ..., aN1

for t = 1, T do
Observe state s
Actor returns scoring function at = aθ(st), select items as argmaxia

T
t i

Observe reward for chosen items rt, state st+1 and possible items At+1
Store transition (st, at, rt, st+1, d) in D
Sample random minibatch B of transitions from D :

(sj, aj, rj, sj+1, dj)

Set target yj = rj + γ(1 − dj)Qφtarget
(sj+1, atarget(sj+1))

Update Q-function by one step of gradient DESCENT:

∇φ
1

|B|
�

j

(yj − Qφ(sj, aj))2

Update policy by one step of gradient ASCENT:

∇θ
1

|B|
�

j

Qφ(sj, aθ(sj))

update target networks
θtarget = θ

φtarget = φ

each M steps
end for

20

We used 2 FC layers with 64 and 32 hidden units and tanh activation for

actor and (32, 32) hidden units for the critic. Learning rate is 1e − 4 and

γ = 0.9. Optimized by Adam. Batch size is 64. Replay buffer size is 10000.

Modifications: prioritized experience replay [16]

3.3 Baselines

• Random Agent - sample randomly K items from At

• Deep Matrix Factorization - concatenate user and item embeddings

and put in 2 fully connected layers.

• Popularity Agent - recommend items with highest mean rank so far,

or highest number of positive ratings

• LinUCB - linear contextual bandit with disoint features [17]

• HLinUCB - linear contextual bandit with shared features [17]

• PPO2 - Proximal Policy Optimization from stable baselines, that com-

bines the ideas of actor-critic and constrained update of TRPO.

21

4 Environment

We mentioned earlier the sample inefficiency problem. Other problem might

be that there are not many datasets for recommendations with proper time

information. If we have a proprietary data we can proceed by constructing a

simulator of rewards as in [18]. And then train agent with that environment.

Another approach is to build some model by ourselves with some assump-

tions on distributions of user preferences. For example, [19] proposed RecoGym

environment to model a process of web-ads clicking.

To construct such environment it is better to use OpenAI gym [20] library

that proposes a convenient simple interface. Then it can be easily shared, thus

facilitating reproducibility. Two main methods reset and step is introduced

in Fig. 11. The episode is an interaction with one user, it starts by reset

method. The episode is considered as finished when the step method return

done = True.

Figure 9: Interaction loop with environment

22

4.1 MovieLens offline

One straightforward approach to evaluation is an offline evaluation of the ex-

isting dataset.

ml-100k ml-1m
users 943 6040
items 1682 3952
ratings 100000 1000209

Table 1: Dataset statistics

To perform offline evaluation we will ask the algorithm to rerank known

items from user sessions. The movies have rantings from 1 to 5. We will

consider movies with ratings 4 and 5 as relevant to compute our metrics.

We can split interactions into sessions by time or just by a number of inter-

actions.

Algorithm 3 Offline Evaluation Algorithm
n state window size
R reward function
Observe initial state s0
Observe set I from log
for t = 1, T do

Observe current state st = {i1, ..., in}
Execute action at = πθ(st)
Choose it with highest score
Get reward rt = R(st, at) from log
Update state st+1 = f(Ht+1)
Remove it from I

end for

We compute the following metrics: precision@k, NDCG@k.

precision = # of receommended in first k in I
of recommended (15)

DCG@k =
k�

i=1

ri

log(1 + i) nDCG@k = DCG@k

IDCG@k
(16)

23

where IDCG@k is Ideal Discounted Cumulative gain, where recommended

items sorted by their relevance

At each time step we recommend K = 1 items, metrics @k are computed

for all recommendations during one session. sXX gives the size of the session

in items.

ml-100k s20 ml-100k s30
NDCG@10 Precision@10 NDCG@10 Precision@10

Random 0.7 0.15 0.68 0.18
Popularity 0.85 0.21 0.82 0.22

SVD 0.82 0.18 0.78 0.18
LinUCB 0.86 0.20 0.83 0.23

HLinUCB 0.83 0.19 0.82 0.21
DDPG 0.84 0.20 0.81 0.22
PPO2 0.82 0.18 0.81 0.21

Table 2: Metrics for different session size for MovieLens100k

Figure 10: Distribution of impressions over items: lower curve means that
algorithm served more different items

As we can see results of RL algorithms are quite comparable with LinUCB

but provides slightly better variety as their CDF curve are lower.

24

ml-1m s20 ml-1m s30
NDCG@10 Precision@10 NDCG@10 Precision@10

Random 0.76 0.31 0.77 0.32
Popularity 0.83 0.44 0.84 0.44

SVD 0.78 0.33 0.77 0.32
LinUCB 0.85 0.44 0.86 0.45
DDPG 0.82 0.40 0.83 0.4
PPO2 0.79 0.35 0.84 0.42

Table 3: Metrics for different session size for MovieLens 1M

Figure 11: Distribution of impressions over items for MovieLens 1M: lower curve
means that algorithm served more different items

4.2 MovieLens

The main problem of offline evaluation is that we can’t obtain the rewards

for the actions that we didn’t take in out logged policies. In order to obtain

some model of rewards for any pair of user-item in the dataset, we create the

embeddings of users and items by performing Probabilistic Matrix Factorization

(PMF) over MovieLens-100k dataset. The recommendation process proceeds

25

as follows: environment gives a user and a set of available for recommendation

items to the agent. Then agent chooses K elements and returns their indexes.

The environment returns the agent reward and new observation.

The reward can be a score from 1 to 5 predicted by PMF (i.e. dot product

between user and item embeddings) or it can be normalized to [-1,1].

Algorithm 4 Online Evaluation Algorithm
Train PMF item/user vectors
Update parameters continuously
restore the parameters from train stage before each evaluation session

As we give all not interacted items to the agent, it takes a considerable

amount of time to score all items, so we took a smaller environment with

1000 user and 1000 items. (The embeddings were constructed using the whole

MovieLens-100k dataset).

At each time step agent receive a user representation as 5 last interacted

items and all items that the user hasn’t seen. Then the agent recommends 1

item and receives the reward and next user/item observation.

Figure 12: Total accumulated reward for MovieLens-v2 rewards [-1, 1]

Even from quite a few steps DDPG could capture some dependencies better

than Deep matrix factorization (MF). But basic DQN failed in such task.

26

5 Discussion

With current progress in the understanding of Reinforcement learning, it is

possible to obtain algorithms stable enough to use in recommender systems. RL

algorithms performed a bit worse on precision@k and NDCG@k on a proposed

offline benchmark, but they proposed better exploration than other baselines.

There appear many articles from Google[7], Facebook[21], Huawei[13],

Adobe[22], Alibaba[23, 24] and JD.com[25] on that topic in the recent 2 years.

Authors proposed different representations of underlying MDP and the algo-

rithms to find optimal policies. Although in several works only marginally im-

provements were observed in production A/B testing, the authors noticed that

RL approaches serves more varied items. If the recommender system serves

more different items without loss in Click-Through-Rate (CTR) or view-time,

that means in the future it will have more information about the items and the

user preferences, which will lead to further improvements. But that effect is

more difficult to measure in short A/B testing phase.

Reinforcement learning is an especially promissing research topic in the sci-

entific community. There are still a lot of theoretical problems concerning

stability and convergence.

27

6 Conclusion

In this project, we have studied the applications of reinforcement learning al-

gorithms to the task of recommendations.

The main contributions of the project are 3 folds:

1. Discussed several popular approaches for casting recommendations in the

MDP framework for reinforcement learning

2. Built several types of recommendation environments/benchmarks

3. Experiments with DQN and DDPG agents

That research direction is very promising and vast. Extensive ablation stud-

ies and comparison between different MDP models could be fruitful directions

of future research.

28

Bibliography

1. Linden G., Smith B., York J. Amazon.com Recommendations: Item-to-

Item Collaborative Filtering // IEEE Internet Computing. — 2003. —

Jan. — Vol. 7. — P. 76–80. — ISSN 1089-7801. — DOI: 10.1109/MIC.

2003.1167344. — URL: doi.ieeecomputersociety.org/10.1109/MIC.

2003.1167344.

2. Xue H.-J. [et al.]. Deep Matrix Factorization Models for Recommender

Systems. // IJCAI. — 2017. — P. 3203–3209.

3. Bonner S., Vasile F. Causal Embeddings for Recommendation // Pro-

ceedings of the 12th ACM Conference on Recommender Systems. — Van-

couver, British Columbia, Canada : ACM, 2018. — P. 104–112. — (RecSys

’18). — ISBN 978-1-4503-5901-6. — DOI: 10.1145/3240323.3240360. —

URL: http://doi.acm.org/10.1145/3240323.3240360.

4. McMahan H. B. [et al.]. Ad Click Prediction: A View from the Trenches //

Proceedings of the 19th ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining. — Chicago, Illinois, USA : ACM, 2013. —

P. 1222–1230. — (KDD ’13). — ISBN 978-1-4503-2174-7. — DOI: 10.

1145/2487575.2488200. — URL: http://doi.acm.org/10.1145/

2487575.2488200.

5. Li L. [et al.]. A Contextual-bandit Approach to Personalized News Article

Recommendation // Proceedings of the 19th International Conference on

World Wide Web. — Raleigh, North Carolina, USA : ACM, 2010. —

P. 661–670. — (WWW ’10). — ISBN 978-1-60558-799-8. — DOI: 10.

1145/1772690.1772758. — URL: http://doi.acm.org/10.1145/

1772690.1772758.

29

6. Zhang S. [et al.]. Deep Learning based Recommender System: A Survey

and New Perspectives. — 2017. — arXiv: 1707.07435. — URL: https:

//arxiv.org/abs/1707.07435.

7. Chen M. [et al.]. Top-K Off-Policy Correction for a REINFORCE Recom-

mender System. — 2018. — arXiv: 1812.02353. — URL: http://arxiv.

org/abs/1812.02353.

8. Achiam J. OpenAI Spinning Up in Deep RL! — 2019. — URL: https:

//spinningup.openai.com/en/latest/spinningup/rl_intro.html.

9. François-Lavet V. [et al.]. An Introduction to Deep Reinforcement Learn-

ing // CoRR. — 2018. — Vol. abs/1811.12560. — arXiv: 1811.12560. —

URL: http://arxiv.org/abs/1811.12560.

10. Mnih V. [et al.]. Playing Atari with Deep Reinforcement Learning //

CoRR. — 2013. — Vol. abs/1312.5602. — arXiv: 1312.5602. — URL:

http://arxiv.org/abs/1312.5602.

11. Zhao X. [et al.]. Deep Reinforcement Learning for List-wise Recommen-

dations. — 2017. — arXiv: 1801.00209. — URL: http://arxiv.org/

abs/1801.00209.

12. Lillicrap T. P. [et al.]. Continuous control with deep reinforcement learn-

ing. — 2015. — arXiv: 1509.02971 [cs.LG].

13. Liu F. [et al.]. Deep Reinforcement Learning based Recommendation with

Explicit User-Item Interactions Modeling. — 2018. — arXiv: 1810.12027. —

URL: http://arxiv.org/abs/1810.12027.

14. Guo R. [et al.]. Quantization based Fast Inner Product Search. — 2015. —

arXiv: 1509.01469. — URL: http://arxiv.org/abs/1509.01469.

30

15. Mnih V. [et al.]. Playing Atari with Deep Reinforcement Learning. —

2013. — arXiv: 1312.5602. — URL: http://arxiv.org/abs/1312.5602.

16. Schaul T. [et al.]. Prioritized experience replay // arXiv preprint arXiv:1511.05952.

2015.

17. Li L. [et al.]. A Contextual-Bandit Approach to Personalized News Ar-

ticle Recommendation. — ISBN 9781605587998. — URL: http://rob.

schapire.net/papers/www10.pdf.

18. Zhao X. [et al.]. Recommendations with Negative Feedback via Pairwise

Deep Reinforcement Learning. — 2018. — DOI: 10 . 1145 / 3219819 .

3219886. — arXiv: 1802.06501. — URL: http://arxiv.org/abs/

1802.06501http://dx.doi.org/10.1145/3219819.3219886.

19. Rohde D. [et al.]. RecoGym: A Reinforcement Learning Environment for

the problem of Product Recommendation in Online Advertising. — 2018. —

DOI: 10.1111/j.1540-8159.2011.03285.x. — arXiv: 1808.00720. —

URL: http://arxiv.org/abs/1808.00720.

20. Brockman G. [et al.]. OpenAI Gym. — 2016. — arXiv: 1606.01540. —

URL: http://arxiv.org/abs/1606.01540.

21. Gauci J. [et al.]. Horizon: Facebook’s Open Source Applied Reinforcement

Learning Platform. — 2018. — arXiv: 1811.00260. — URL: http://

arxiv.org/abs/1811.00260.

22. Theocharous G., Thomas P. S., Ghavamzadeh M. Personalized ad recom-

mendation systems for life-time value optimization with guarantees // IJ-

CAI Int. Jt. Conf. Artif. Intell. 2015-Janua. — 2015. — P. 1806–1812. —

ISBN 9781577357384. — DOI: 10 . 1145 / 2740908 . 2741998. — URL:

https://www.ijcai.org/Proceedings/15/Papers/257.pdf.

31

23. Liu Y. [et al.]. Diversity-Promoting Deep Reinforcement Learning for In-

teractive Recommendation. — 2019. — arXiv: 1903 . 07826. — URL:

http://arxiv.org/abs/1903.07826.

24. Hu Y. [et al.]. Reinforcement Learning to Rank in E-Commerce Search En-

gine: Formalization, Analysis, and Application. — 2018. — arXiv: 1803.

00710. — URL: http://arxiv.org/abs/1803.00710.

25. Zhao X. [et al.]. Model-Based Reinforcement Learning for Whole-Chain

Recommendations. — 2019. — arXiv: 1902.03987. — URL: http://

arxiv.org/abs/1902.03987.

32

