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Abstract—Recommender systems help users to orient in the
vast space of goods, services, and events. A user interacts with
recommender engine in a sequence of exchanges of recommen-
dations and user feedback. The idea that previous interaction
influence the later ones and the importance of the sequence of
interactions can be modeled using Markov decision processes
and solved by reinforcement learning. Several recent articles
applying reinforcement learning to recommender systems has
proved the viability of this direction. But it is still difficult
to compare different approaches. We propose an environment
with a unified interface that will permit to compare different
modelization of recommender process and different algorithms
on the same underlying sequential data. We also performed the
extensive parameter study for deep deterministic policy gradient
methods on the well-known MovieLens dataset.

Index Terms—recommender systems, reinforcement learning,
long-term value, deep reinforcement learning (DRL), DDPG

I. INTRODUCTION

Usually, the recommendation process is viewed as a static,
in other words, we train a model on some log history dataset
and then serve it for some period of time without modifica-
tions. In order to update the model to account for users and
items evolution in time, we need to retrain it. In that case, we
do not model the influence of the interaction between user and
recommender system (RS) and optimize only for a short-term
reward (Compare: will a user like this product? vs will our RS
provide agreeable user experience and increase overall usage
of the service by a user?).

By casting the problem of recommendations into Reinforce-
ment Learning (RL) framework we hope to achieve several
important benefits. Firstly, we do not discard change in users
preference w.r.t. time. Secondly, we can optimize not only the
immediate reward/feedback of the users to the item but also
the longterm contributions that our recommendation policy
can achieve following one sequence of recommendations or
another.

The paper is organized as follows. In Section II we provide a
background for Markov decision processes and reinforcement
learning methods to solve them. Related work is described in
Section III. Proposed modelization and algorithm are presented
in Section IV. Section V describes the testing procedure and
the experimental results. Conclusion and final remarks are
given in Section VI.

II. BACKGROUND

We are interested in the optimization of the interaction
between an environment (users with their preferences for
recommended items) and an agent (recommender system).

Agent Environment

at - action

st, rt - observation, reward

Fig. 1. Agent-environment interaction

A. Markov decision process

The underlying mathematical formalization of the environ-
ment is Markov decision process (MDP). MDP is a tuple
< S,A,P,R, γ >.
• State space S - representation of the observation.
• Action space A - what kind of actions can an agent

choose
• Transition function P - represents the transition probabil-

ity between current state st and the next state st+1 given
an action at

• Reward function R - outputs a scalar value on each
transition

• Discount factor γ - defines the length of the sequence of
actions for with we consider the reward.

B. Reinforcement learning

The goal of agent is to find optimal policy π : S → A that
will maximaze cumulative discounted return:

G =

T∑
t

γtrt (1)

There are two approaches to find a good policy.
• Q-learning - estimate action-value function Qπ(s, a) =

E[G|s0 = s, a0 = a] and take a policy π(s) =
argmaxaQ(s, a)

• Policy optimization (policy search) - take a parametrized
function as policy πθ(s) = f(s; θ) and maximaze total
expected reward by these parameters.



In many applications, we do not know the model of the
environment (the transition and the reward functions). In that
case, we can either estimate P and T and use a model-based
approach, or we can use model free algorithms.

III. RELATED WORK

Various techniques, such as content-based collaborative
filtering [1], matrix factorization methods [2], [3], logistic
regression, factorization machines [4] models recommendation
as static task or use time only as a feature.

Contextual bandits [5] provide good performance, but the
contexts are supposed to be i.i.d and we want to model the
influence of recommendations on user state.

The first line of works in applying RL to recommender
systems is to study the performance on generated or available
datasets. [6] proposed a variant of synthesized environment
that modeled user and item embeddings as a vector with nor-
mally distributed components with varied level of correlation.
They combined the flow of ’organic’ views made by users
independently of RS and ’bandit’ views - the feedback on the
items proposed by RS in one interface. [7] used DDPG with
additional user-item representation module and evaluated on
MovieLens, Yahoo music, Jester datasets. [8] tried to optimize
diversity of recommendations proposed by RL algorithm but
evaluated on a subset of MovieLens dataset.

Another approach is to use proprietary data and model
specific sequential behavior according to the domain knowl-
edge about the recommendation process. In the articles from
JD.com [9] they used RL to jointly generate a set of recom-
mendation and a specific order to display them. The agent
has Actor-Critic architecture and model a state by feeding the
embeddings of previously clicked items into the RNN. Then
policy network outputs a vector that can be interpreted as a
concatenated preferences for each position in the 2D display.
Products are chosen as argmax of the scalar product of item
embedding and preferences vector. Another article [10] opti-
mize in one whole-chain approach different scenarios of user
behavior: entrance page, item detail pages. They used a multi-
agent reinforcement learning (MARL) approach to jointly
optimize where each agent was responsible for one particular
scenario. Alibaba Group research team [11] proposed a model-
based formalism as search session Markov decision process
with page histories, conversion and abandon states, where
they estimate transition the transition function using function
approximation. [12] used RL to model news recommendations.
DQN they use continuous state feature representation and
continuous action feature representation. As a reward, they
used not only click/noclick but also how frequent user returns
to the application. [13] used RL agent to traverse some tree
structure over items to provide recommendations.

Facebook has developed recently a framework for RL called
Horizon [14] and make recommendations of push messages.

A recent article on the difficulty of baseline evaluation [15]
brought to light the problem of the quality of benchmarks
and baseline finetuning. They were able to outperform the
recent algorithms on the MovieLens 10M and Netflix prize

datasets using older methods but with better hyperparameters
and some modifications. Their research confirms the difficulty
of the proper evaluation of recommender systems.

IV. PROPOSED METHOD

In this article, we will consider simple MDP formalism
and an adaptation of the DDPG algorithm. We will propose
one possible way to make an OpenAI gym environment for
recommender process.

A. MDP

Following [16] it is possible to model a state space as a list
of N last interacted items and an action space as a list of K
items. In our experiments we will consider K = 1. Each item
is represented by an embedding of product in some space or a
feature vector because working with indices of items and users
don’t allow a policy to capture useful patterns efficiently.

More formally,
• State space S: A state st = {s1t , · · · , sNt } ∈ S is defined

as the browsing history of a user, i.e., previous N items
that a user liked before time t.

• Action space A: An action at = {a1t , · · · , aKt } ∈ A
• Reward R. The agent receives immediate reward
r(st, at) according to the user’s feedback on each action
in the list and a chosen aggregation rule, i.e. simple sum
of rewards or weighted by position.

• Transition probability P: Transition probability
p(st+1|st, at) defines the probability of state transition
from st to st+1 when agent takes action at. If user
skips all the recommended items, then the next state
st+1 = st; while if the user clicks/orders part of items,
then the next state st+1 updates.

• Discount factor γ: γ ∈ [0, 1] defines the discount factor
when we measure the present value of future reward.

B. DDPG Agent

Deep Deterministic Policy Gradient is an off-policy algo-
rithm [17] that scales well with huge action spaces. There are
two parts: actor that model deterministic policy a(s) and critic
that approximate action-value function Q(s, a).

Actor network models state-specific scoring function fθπ :
st → wt Then we recommend K items without repetition with
maximal

scorei = wkt i
T
i (2)

Critic takes state St and action at and computes Q(St, at).
Optimal policy should satisfy:

a∗(s) = argmax
a

Q∗(s, a) (3)

Using that fact we can avoid computing max over action-
values of each item as in DQN, instead we will just use
Q(s, a(s)).

Critic minimizes mean-squared Bellman error (the differ-
ence between bootstrapped action-value and current action-
value)

L = E
[
(Q(s, a)− (r + γQtarget(s

′, atarget(s
′))2
]

(4)



where target subscript defines the function with the same
structure but different weights, targets are updated softly or
after some number of iterations M .

Actor’s weights are also updated with gradient descent to
maximaze:

max
θ

E[Q(s, aθ(s))] (5)
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Fig. 2. DDPG

Algorithm 1 Deep Deterministic Policy Gradient
1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with random weights
3: Set target parameters θtarget ← θ, φtarget ← φ
4: Initialise sequence s1, A1 = a1, ..., aN1

5: for t = 1, T do
6: Observe state s
7: Actor returns scoring function at = aθ(st), select items

as argmaxiaTt i
8: Observe reward for chosen items rt, state st+1 and

possible items At+1

9: Store transition (st, at, rt, st+1, d) in D
10: Sample random minibatch B of transitions from D :

(sj , aj , rj , sj+1, dj)

11: Set target
yj = rj + γ(1− dj)Qφtarget(sj+1, atarget(sj+1))

12: Update Q-function by one step of gradient DESCENT:

∇φ
1

|B|
∑
j

(yj −Qφ(sj , aj))2

13: Update policy by one step of gradient ASCENT:

∇θ
1

|B|
∑
j

Qφ(sj , aθ(sj))

14: update target networks

θtarget = ρθtarget + (1− ρ)θ

φtarget = ρφtarget + (1− ρ)φ

15: end for

C. Environment
As was mentioned by a recent study of the evaluation of the

baselines [15] for MovieLens and Netflix Prize datasets it is a

really difficult task. Better evaluations can be obtained through
collaborative efforts that can be organized as a competition or
clearly defined benchmarks. Another good reason for creating
OpenAI Gym environment is the ability to run already im-
plemented RL algorithms with small changes implemented in
environment wrapper.

To construct such environment it is better to use OpenAI
gym [18] library that proposes a convenient simple interface.
Then it can be easily shared, thus facilitating reproducibility.
Two main methods reset and step are introduced in Fig. 3.
The episode is an interaction with one user, it starts by reset
method. The episode is considered finished when the step
method return done = True. If for a particular dataset we
have ground truth recommended actions and we want to learn
from them we can provide them in info variable.

Fig. 3. Interaction loop with environment

To obtain different types of states and actions we can use
wrappers with the same interface that will preprocess the initial
states and actions. It is also useful to add another method that
will return the action taken by the user if we want to learn
not only from a signal of item ratings but also the sequences
of real user decisions.

D. Baselines

• Random Agent - sample randomly K items from At
• SVD - SVD++ matrix factorization [19]
• Popularity Agent - recommend items with highest mean

rank so far, or highest number of positive ratings



• LinUCB - linear contextual bandits [5]

V. EXPERIMENTAL RESULTS

A. MovieLens

One straightforward approach to evaluation is an offline
evaluation of MovieLens [20].

TABLE I
DATASET STATISTICS

ml-100k ml-1m
users 943 6040
items 1682 3952

ratings 100000 1000209

To perform offline evaluation we will ask the algorithm
to rerank known items from user sessions. The movies have
ratings from 1 to 5. We will consider movies with ratings 4 and
5 as relevant to compute our metrics. Rewards are normalized
to [−1, 1].

We can split interactions into sessions by time or just by a
number of interactions. DDPG algorithm will perform poorly
if we only use categorical genres as representations of items.
To provide a kind of structured embeddings we computed SVD
with size 40 on train ratings.

Algorithm 2 Offline Evaluation Algorithm
1: n state window size
2: R reward function
3: Observe set I from log
4: for t = 1, T do
5: Observe current state st = {i1, ..., in}
6: Execute action wt = aθ(st)
7: Choose it with highest score (2)
8: Get reward rt = R(st, at) from log
9: Update state st+1 = P (st, at, rt)

10: Remove it from I
11: end for

We compute the following metrics: precision@k,
NDCG@k.

precision =
# of receommended in first k in I

# of recommended
(6)

DCG@k =

k∑
i=1

ri
log(1 + i)

(7)

nDCG@k =
DCG@k

IDCG@k
(8)

where IDCG@k is Ideal Discounted Cumulative gain,
where recommended items sorted by their relevance. At each
time step we recommend K = 1 items, metrics @k are
computed for all recommendations during one session. sXX
gives the size of the session in items.
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Fig. 4. Parameter study of DDPG algorithm on MovieLens100k

To understand the behavior of DDPG algorithm with various
parameters with a varied number of hidden nodes in actor and
critic network, experience replay buffer size and batch size.

The best set of parameters was identified by NDCG@10
metric (see Fig. 4): actor and critic are MLPs with 64 hidden
nodes and tanh activations. They were optimized by Adam
optimizer with learning rate 10−3 and batch size 64. Replay
buffer size is 20000. Soft target update rate ρ = 0.01.

TABLE II
METRICS FOR DIFFERENT SESSION SIZE FOR MOVIELENS100K

ml-100k s20 ml-100k s30
NDCG@10 Precision@10 NDCG@10 Precision@10

Random 0.78 0.56 0.76 0.56
Popularity 0.86 0.68 0.86 0.69

SVD 0.80 0.60 0.77 0.57
LinUCB 0.85 0.65 0.84 0.67
DDPG 0.83 0.63 0.81 0.63
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Fig. 5. Distribution of impressions over items: lower curve means that
algorithm served more different items

As we can see results of RL algorithms are quite comparable
with LinUCB and Popularity but provides slightly better
variety as their CDF curve are lower Fig. 5, 6.

VI. CONCLUSION

In this project, we have studied the applications of reinforce-
ment learning algorithms to the task of recommendations.



TABLE III
METRICS FOR DIFFERENT SESSION SIZE FOR MOVIELENS 1M

ml-1m s20 ml-1m s30
NDCG@10 Precision@10 NDCG@10 Precision@10

Random 0.76 0.65 0.78 0.66
Popularity 0.85 0.78 0.88 0.81

SVD 0.76 0.66 0.77 0.66
LinUCB 0.85 0.78 0.87 0.8
DDPG 0.87 0.81 0.83 0.74
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Fig. 6. Distribution of impressions over items for MovieLens 1M: lower
curve means that algorithm served more different items

The main contributions of this work are 2 folds:

1) Proposed an interface for recommendation environment
2) Experiments with DDPG agents and comparison against

baselines

That research direction is very promising and vast. Main ad-
vantages of the application of RL to recommendation process
are

• we consider recommendation process as dynamic and
optimize for long-term rewards

• we model the influence of the recommendations on user
state

• MDP formalism is flexible and different scenarios can be
modeled easily in this framework

But it is still not mature approach for building recommender
systems and extensive ablation studies and comparison be-
tween different MDP models could be fruitful directions of
future research.
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