Value and Policy Iteration

DOROZHKO Anton

Novosibirsk State University

May 20, 2019

DOROZHKO Anton (Novosibirsk State Unive

Value and Policy Iteration

May 20, 2019 1/41

2 Policy Iteration

< □ > < @ >

DOROZHKO Anton (Novosibirsk State Unive

Value and Policy Iteration

May 20, 2019 2 / 41

Intorduction to MDPs

- MDP descrives environment
- Fully observable state completely characterises the process
- Almost all RL problems can be formalised as MDPs

Definition

A state S_t is Markov iff

$$\mathbb{P}[S_{t+1}|S_t] = \mathbb{P}[S_{t+1}|S_1, ..., S_t]$$

- captures all relevant information
- can throw away the history if we know state

Definition

A Markov Process (or Markov Chain) is a tuple $(\mathcal{S}, \mathcal{P})$

- \mathcal{S} is a (finite) set of states
- $\bullet \ \mathcal{P}$ is a transition probability matix

$$\mathcal{P}_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s]$$

DOROZHKO Anton (Novosibirsk State Unive

Value and Policy Iteration

May 20, 2019 4 / 41

Student's MRP¹

Markov Reward Process

Definition

A Markov Reward Process is a tuple $(\mathcal{S}, \mathcal{P}, \mathcal{R}, \gamma)$

- S is a (finite) set of states
- \mathcal{P} is a transition probability matix

$$\mathcal{P}_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s]$$

• \mathcal{R} is a reward function : $\mathcal{R}_s = \mathbb{E}[R_{t+1}|S_t = s]$

• γ is a discount factor, $\gamma \in [0, 1]$

N*Novosibirsk State University *THE REAL SCIENCE

Student's MRP²

Discounted Reward

$$G_t = R_t + \gamma R_{t+1} \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

If max R = 1 then $G_0 = \sum \gamma^k = \frac{1}{1-\gamma}$

DOROZHKO Anton (Novosibirsk State Unive

Discounted Reward

$$G_t = R_t + \gamma R_{t+1} \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

$$G_t = R_t + \gamma G_{t+1}$$

DOROZHKO Anton (Novosibirsk State Unive

Value and Policy Iteration

May 20, 2019 9 / 41

Value Function

Definition

The state value function V(s) of an MRP is the expected return starting from state s

$$V(s) = \mathbb{E}[G_t | S_t = s]$$

V(s) gives the long-term value of state s

DOROZHKO Anton (Novosibirsk State Unive

Value and Policy Iteration

May 20, 2019 10 / 41

State value function's for Student MRP ³

³from David Silver course

DOROZHKO Anton (Novosibirsk State Unive

Value and Policy Iteration

May 20, 2019 11 / 41

Novosibirsk

versitu

SCIENCE

State value function's for Student MRP ⁴

Bellman Equation for Value Function

Decomposition:

- immediate reward R_{t+1}
- discounted value of the next state $\gamma V(S_{t+1})$

$$V(s) = \mathbb{E}[G_t | S_t = s] = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots | S_t = s] = \mathbb{E}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + \dots) | S_t = s] = \mathbb{E}[R_{t+1} + \gamma G_{t+1} | S_t = s] = \mathbb{E}[R_{t+1} + \gamma V_{t+1} | S_t = s]$$

DOROZHKO Anton (Novosibirsk State Unive

Novosibirsk State University HE REAL SCIENCE Bellman equation MRP

$$V(s) = \mathbb{E}[R_{t+1} + \gamma V(S_{t+1}|S_t = s]]$$

 $V(s) = r + \gamma \sum_{s' \in S} \mathcal{P}_{ss'}V(s'))$

$$egin{aligned} & V = \mathcal{R} + \gamma \mathcal{P} V \ & (I - \gamma \mathcal{P}) V = \mathcal{R} \ & V = (I - \gamma \mathcal{P})^{-1} \mathcal{R} \end{aligned}$$

DOROZHKO Anton (Novosibirsk State Unive

May 20, 2019 14 / 41

$$egin{aligned} & V &= \mathcal{R} + \gamma \mathcal{P} V \ & (I - \gamma \mathcal{P}) V &= \mathcal{R} \ & V &= (I - \gamma \mathcal{P})^{-1} \mathcal{R} \end{aligned}$$

- $\mathcal{O}(n^3)$ for *n* states
- small MDPs
- Other options:
 - Dynamic programming (DP)
 - Monte-Carlo evaluation (MC)
 - Temporal-Difference learning (TD)

DOROZHKO Anton (Novosibirsk State Unive

Markov Decision Process

Definition

A Markov Decision Process is a tuple (S, A, P, R, γ)

- \mathcal{S} is a (finite) set of states
- $\bullet \ \mathcal{A}$ is a finite set of actions
- \mathcal{P} is a transition probability matix

$$\mathcal{P}^{a}_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$$

• \mathcal{R} is a reward function :

$$\mathcal{R}^{\mathsf{a}}_{s} = \mathbb{E}[R_{t+1}|S_{t} = s, A_{t} = a]$$

• γ is a discount factor, $\gamma \in [0,1]$

DOROZHKO Anton (Novosibirsk State Unive

< □ > < 同 > < 回</p>

Student's MDP ⁵

Policy

Definition

A policy π is a distribution over actions given states

$$\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$$

< □ > < @ >

DOROZHKO Anton (Novosibirsk State Unive

Value and Policy Iteration

May 20, 2019 18 / 41

Value Function

State-value function

The state value function $V_{\pi}(s)$ of an MDP is the expected return starting from state *s*, and then following policy π

$$V_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

Action-value function

The action-value function $Q_{\pi}(s, a)$ is expected return starting from state s, taking action a, and then following policy pi

$$Q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a]$$

DOROZHKO Anton (Novosibirsk State Unive

University

Notation variants

$$\mathbb{E}[G_0] = \mathbb{E}[R_0 + \gamma R_1 + ... + \gamma^T R_T]$$

= $\mathbb{E}[G_0 | \pi_{\theta}]$
= $\mathbb{E}_{\pi_{\theta}}[G_0]$
= $\sum_{t=0}^T \mathbb{E}_{(s_t, \hat{\sigma}_t) \sim p_{\theta}}[\gamma^t R_t]$
= $\mathbb{E}_{\tau \sim p_{\theta}(\tau)}[G(\tau)]$

•
$$\tau = (s_0, a_0, s_1, a_1, ..., a_{T-1}, s_T)$$

• $p_{\theta}(\tau) = p(s_0) \prod_{t=0}^{T-1} \pi_{\theta}(a_t|s_t) p(s_{t+1}|s_t, a_t)$

DOROZHKO Anton (Novosibirsk State Unive

May 20, 2019 20 / 41

Bellman Expectation Equation

Decomposition into immediate reward plus discounted value in next state

$$V_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma V_{\pi}(S_{t+1})|S_t = s]$$

$$Q_{\pi}(s,a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1},A_{t+1})|S_t = s, A_t = a]$$

DOROZHKO Anton (Novosibirsk State Unive

Value and Policy Iteration

May 20, 2019 21 / 41

Optimal Value Functions

Definition

The optimal state-value function $V_*(s)$ is the maximum value function over all policies

$$V_*(s) = \max_{\pi} V_{\pi}(s)$$

The optimal action-value function $Q_*(s, a)$ is the maximum action-value function over all policies

$$Q_*(s,a) = \max_{\pi} Q_{\pi}(s,a)$$

DOROZHKO Anton (Novosibirsk State Unive

May 20, 2019 22 / 41

Optimal Policy

Partial ordering over policies

$$\pi \geq \pi' \quad \textit{if} \quad V_{\pi}(s) \geq V_{\pi'}(s) \quad orall s$$

Theorem

For any Markov Decision Process

- There exists an optimal policy π_{*} that is better than or equal to all other policies π_{*} ≥ π, ∀π
- All optimal policies achieve the optimal values function $V_{\pi_*}(s) = V_*(s)$
- All optimal policies achieve the optimal action-value function $Q_{\pi_*}(s,a) = Q_*(s,a)$

" THE REAL SUIENCE

Iterative algorithm

- Initialize $V_0(s) = 0$ for all s
- for k = 1 until convergence
 - for all $\pmb{s} \in \mathcal{S}$

$$V_k(s) = R(s) + \gamma \sum_{s' \in S} P(s'|s) V_{k-1}(s')$$

• $\mathcal{O}(|S|^2)$ for each iteration

DOROZHKO Anton (Novosibirsk State Unive

May 20, 2019 24 / 41

$\mathsf{MDP} + \mathsf{Policy}$

- MDP + $\pi(a|s)$ = Markov Reward Process
- MRP($S, \mathcal{R}^{\pi}, \mathcal{P}^{\pi}, \gamma$), where

$$R^{\pi}(s) = \sum_{a \in A} \pi(a|s) R(s,a)$$

$$P^{\pi}(s'|s) = \sum_{a \in A} \pi(a|s) P(s'|s,a)$$

• We can reuse iterative algorithm

DOROZHKO Anton (Novosibirsk State Unive

May 20, 2019 25 / 41

Iterative algorithm

- Initialize $V_0(s) = 0$ for all s
- for k = 1 until convergence
 - for all $s \in \mathcal{S}$

$$V_k^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, \pi(s)) V_{k-1}^{\pi}(s')$$

• Bellman backup for particular policy

DOROZHKO Anton (Novosibirsk State Unive

May 20, 2019 26 / 41

MDP Control

• Compute optimal policy

$$\pi^*(s) = rg\max_{\pi} V^{\pi}(s)$$

• There exists a unique value function

DOROZHKO Anton (Novosibirsk State Unive

Value and Policy Iteration

May 20, 2019 27 / 41

< □ > < @ >

Gridworld example

- Undiscounted episodic MDP ($\gamma = 1$)
- Nonterminal states 1, ..., 14
- One terminal state (shown twice as shaded squares)
- Actions leading out of the grid leave state unchanged
- Reward is -1 until the terminal state is reached
- Agent follows uniform random policy

$$\pi(n|\cdot) = \pi(e|\cdot) = \pi(s|\cdot) = \pi(w|\cdot) = 0.25$$

Novosibirsk State University RFAL SCIENCE

Gridworld example

 v_k for the Random Policy

Greedy Policy w.r.t. v_k

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

	⇔	⇔	⇔	
↔	⇔	ᠿ	⇔	random
↔	⇔	⇔	↔	policy
\Leftrightarrow	ᠿ			

	Ļ		↔
t	ᠿ		↔
⇔	⇔		Ļ
↔	⇔	→	

k = 1

k = 0

	←	←	↔
t	Ļ		÷
t	⇔	L→	Ŧ
↔	\rightarrow	\rightarrow	

DOROZHKO Anton (Novosibirsk State Unive

Value and Policy Iteration

May 20, 2019 29 / 41

< 47 ▶

Policy Iteration(PI)

- *i* = 0
- Initialize $\pi_0(s)$ randomly for all s
- While i == 0 or $||\pi_i \pi_{i-1}|| > 0$
 - $V^{\pi} \leftarrow \text{MDP}$ policy evaluation of π_i
 - $\pi_{i+1} \leftarrow$ Policy improvement
 - *i* = *i* + 1

DOROZHKO Anton (Novosibirsk State Unive

May 20, 2019 30 / 41

Q function

Action value or State-Action value or Q-function

$$Q_{\pi}(s,a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1},A_{t+1})|S_t = s, A_t = a]$$

$$Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V^{\pi}(s')$$

Take action a, then follow policy π

N*Novosibirsk State University *THE REAL SCIENCE

DOROZHKO Anton (Novosibirsk State Unive

May 20, 2019 31 / 41

Image: A matched by the second sec

Policy Improvement

- Compute Q function of π_i
 - For $s \in S$ and $a \in A$:

$$\mathcal{Q}^{\pi_i}(s, a) = \mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}(s'|s, a) \mathcal{V}^{\pi_i}(s')$$

• Compute new policy π_{i+1}

$$\pi_{i+1}(s) = arg \max_{a} Q^{\pi_i}(s,a) \quad orall s \in S$$

May 20, 2019 32 / 41

< 47 ▶

Monotonic Improvement in Policy

$$\begin{split} \sqrt{\pi_i}(s) &\leq \max_a Q^{\pi_i}(s, a) \\ &= \max_a R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) \sqrt{\pi_i}(s') \\ &= R(s, \pi_{i+1}(s)) + \gamma \sum_{s' \in S} P(s'|s, \pi_{i+1}(s)) \sqrt{\pi_i}(s') \\ &\leq R(s, \pi_{i+1}(s)) + \gamma \sum_{s' \in S} P(s'|s, \pi_{i+1}(s)) \max_{a'} Q^{\pi_i}(s', a') \\ &\text{ continue to expand } a' = \pi_{i+1}(s') \\ &= \sqrt{\pi_{i+1}}(s) \end{split}$$

DOROZHKO Anton (Novosibirsk State Unive

May 20, 2019 33 / 41

э

*****THE REAL SCIENCE

Value Iteration

- Policy iteration : computes optimal value and policy
- Value Iteration :
 - Optimal value for state s if k episodes left
 - Iterate to consider longer episodes

DOROZHKO Anton (Novosibirsk State Unive

Gridworld example

Example: Shortest Path

Value Iteration

• *k* = 1

٠

- Init $V_0(s) = 0$
- $\bullet\,$ Look until convergence / T

$$V_{k+1}(s) = \max_{a} R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V_k(s')$$

Operator view

$$V_{k+1} = BV_k$$

• $\pi_{k+1}(s) = \arg \max_{a} R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V_k(s')$

N*Novosibirsk State University *THE REAL SCIENCE

Contraction Operator

- Let O be an operator, and ||.|| denote any norm of x
- if $||OV OV'|| \le ||V V'||$ then O is a contraction operator
- O has fixed point x
- Ox = x

DOROZHKO Anton (Novosibirsk State Unive

Proof: Bellman Backup is a Contraction on V for $\gamma < 1$

$||V - V'|| = max_s ||V(s) - V'(s)||$

Exercise

DOROZHKO Anton (Novosibirsk State Unive

Value and Policy Iteration

May 20, 2019 38 / 41

POMDP

Other

Figure: Doom Classic

A Partially Observable Markov Decision Process is an MDP with hidden states. It is HMM with actions.

DOROZHKO Anton (Novosibirsk State Unive

Value and Policy Iteration

May 20, 2019 39 / 41

SCIENCE

★THE DEΔL

POMDP

Definition

A POMDP is a tuple $(S, A, O, P, R, Z, \gamma)$

- \mathcal{S} is a (finite) set of states
- \mathcal{A} is a finite set of actions
- \mathcal{O} is a finite set of observations
- \mathcal{P} is a transition probability matix $\mathcal{P}_{ss'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$
- \mathcal{R} is a reward function : $\mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$
- \mathcal{Z} is an observation function $\mathcal{Z}^a_{s'o} = \mathbb{P}[O_{t+1} = o | S_t = s', A_t = a]$
- γ is a discount factor, $\gamma \in [0,1]$

Other

Questions ?

The only stupid question is the one you were afraid to ask but never did - Rich Sutton

DOROZHKO Anton (Novosibirsk State Unive

Value and Policy Iteration

May 20, 2019 41 / 41

< 47 ▶