Model-Free Q-learning with MC and TD ²

DOROZHKO Anton

Novosibirsk State University

May 22, 2019

1/24

Outline

Markov decision processes

PI vs VI

MC and TD

Markov Decision Process

Definition

A Markov Decision Process is a tuple (S, A, P, R, γ)

- \circ S is a (finite) set of states
- A is a finite set of actions
- \bullet \mathcal{P} is a transition probability matix

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$$

 \bullet \mathcal{R} is a reward function :

$$\mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$$

• γ is a discount factor, $\gamma \in [0,1]$

Recall Policy Iteration

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$

1. Initialization

$$V(s) \in \mathbb{R}$$
 and $\pi(s) \in A(s)$ arbitrarily for all $s \in S$

2. Policy Evaluation

Loop:

$$\Delta \leftarrow 0$$

Loop for each $s \in \mathcal{S}$:
 $v \leftarrow V(s)$
 $V(s) \leftarrow \sum_{s',r} p(s',r|s,\pi(s))[r + \gamma V(s')]$
 $\Delta \leftarrow \max(\Delta,|v - V(s)|)$

until $\Delta < \theta$ (a small positive number determining the accuracy of estimation)

3. Policy Improvement

$$policy$$
-stable $\leftarrow true$

For each
$$s \in S$$
:

old-action
$$\leftarrow \pi(s)$$

 $\pi(s) \leftarrow \arg \max_{a} \sum_{s',r} p(s', r | s, a) [r + \gamma V(s')]$

$$\pi(s) \leftarrow \arg\max_{a} \sum_{s',r} p(s',r|s,a)[r+\gamma V(s')]$$

If $old\text{-}action \neq \pi(s)$, then $policy\text{-}stable \leftarrow false$

If policy-stable, then stop and return $V \approx v_*$ and $\pi \approx \pi_*$; else go to 2

Recall: Value Iteration

```
Value Iteration, for estimating \pi \approx \pi_*
Algorithm parameter: a small threshold \theta > 0 determining accuracy of estimation
Initialize V(s), for all s \in S^+, arbitrarily except that V(terminal) = 0
Loop:
   \Delta \leftarrow 0
   Loop for each s \in S:
        v \leftarrow V(s)
        V(s) \leftarrow \max_{a} \sum_{s'} p(s', r | s, a) [r + \gamma V(s')]
        \Delta \leftarrow \max(\Delta, |v - V(s)|)
until \Delta < \theta
Output a deterministic policy, \pi \approx \pi_*, such that
   \pi(s) = \operatorname{argmax}_a \sum_{s',r} p(s', r | s, a) [r + \gamma V(s')]
```


Comparison⁸

```
finding optimal
1. Initialization
                                                                                                                       value function
    v(s) \in \mathbb{R} and \pi(s) \in A(s) arbitrarily for all s \in S
                                                                                          Initialize array v arbitrarily (e.g., v(s) = 0 for all s \in S^+)
2. Policy Evaluation
    Repeat
                                                                                          Repeat
         \Delta \leftarrow 0
                                                                                              \Delta \leftarrow 0
         For each s \in S:
                                                                                              For each s \in S:
             temp \leftarrow v(s)
                                                                                                   temp \leftarrow v(s)
             v(s) \leftarrow \sum_{s'} p(s'|s, \pi(s)) \left[ r(s, \pi(s), s') + \gamma v(s') \right]
                                                                                                   v(s) \leftarrow \max_{a} \sum_{s'} p(s'|s, a)[r(s, a, s') + \gamma v(s')]
                                                                                                   \Delta \leftarrow \max(\Delta, |temp - v(s)|)
             \Delta \leftarrow \max(\Delta, |temp - v(s)|)
                                                                                          until \Delta < \theta (a small positive number)
   until \Delta < \theta (a small positive number)
                                                                                          Output a deterministic policy, \pi, such that
3. Policy Improvement
                                                                                              \pi(s) = \arg \max_{a} \sum_{s'} p(s'|s, a) \left[ r(s, a, s') + \gamma v(s') \right]
    policy-stable \leftarrow true
    For each s \in S:
        temp \leftarrow \pi(s)
                                                                                                              Figure 4.5: Value iteration.
        \pi(s) \leftarrow \arg \max_{a} \sum_{s'} p(s'|s, a) \left[ r(s, a, s') + \gamma v(s') \right]
                                                                                                                                           one policy
        If temp \neq \pi(s), then policy-stable \leftarrow false
                                                                                                                                           update (extract
   If policy-stable, then stop and return v and \pi; else go to 2
                                                                                                                                           policy from the
                                                                                                                                           optimal value
```

Figure 4.3: Policy iteration (using iterative policy evaluation) for v_{*}. This algorithm has a subtle bug, in that it may never terminate if the policy continually switches between two or more policies that are equally good. The bug can be fixed by adding additional flags, but it makes the pseudocode so ugly that it is not worth it. :-)

function

Monte-Carlo RI

- MC learns directly from episodes of experience
- Model-free: no knowledge of

$$\mathcal{P}_{ss'}^{\mathsf{a}}$$
 or \mathcal{R}

- complete episodes
- idea : value = mean return
- Caveat: only episodic MDPS episodes must terminate

MC Evaluation

• Goal: learn V_{π} from episodes under policy π

$$S_1, A_1, R_2, ..., S_k \sim \pi$$

Total discounted reward

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

Value function

$$V_{pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

MC Evaluation

• Goal: learn V_{π} from episodes under policy π

$$S_1, A_1, R_2, ..., S_k \sim \pi$$

Total discounted reward

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

Value function

$$V_{pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

 Monte-Carlo policy evaluation uses empirical mean return instead of expected return

8 / 24

¹¹David Silver's Lecture 4

First-Visit Monte-Carlo Policy Evaluation

- To evaluate state s
- The first time-step t that state s is visited in each episode
- N(s) = N(s) + 1
- $S(s) = S(s) + G_t$
- V(s) = S(s)/N(s)
- By law of large numbers $V(s) \to V^{\pi}(s)$ as $N(s) \to \infty$

Incremental Mean

$$\mu_k = \frac{1}{k} \sum_{j=1}^k x_j$$

$$= \frac{1}{k} \left(x_k + \sum_{j=1}^{k-1} x_j \right)$$

$$= \frac{1}{k} (x_k + (k-1)\mu_{k-1})$$

$$= \mu_{k-1} + \frac{1}{k} (x_k - \mu_{k-1})$$

- Update V(s) incrementally after episode $S_1, A_1, R_2, ..., S_T$
- For each state S_t with return G_t

$$N(S_t) = N(S_t) + 1$$

$$V(S_t) = V(S_t) + \frac{1}{N(S_t)}(G_t - V(S_t))$$

In non-stationary problems: running mean

$$V(S_t) = V(S_t) + \alpha(G_t - V(S_t))$$

Temporal-Difference Learning

- TD learns from episodes
- model-free
- incomplete episodes, bootstrappping
- Update a guess towards a guess

MC and TD

- Goal: learn V_{π} online from experience under policy π
- Incremental every-visit MC

•
$$V(S_t) = V(S_t) + \alpha(G_t - V(S_t))$$

- Simplest TD : TD(0)
 - Update $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$

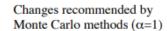
$$V(S_t) = V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

- $R_{t+1} + \gamma V(S_{t+1})$ TD target
- $\delta_t = R_{t+1} + \gamma V(S_{t+1} V(S_t) TD \text{ error}$

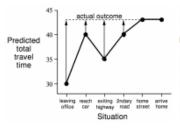
Driving Home Example

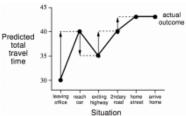
State	Elapsed Time (minutes)	Predicted Time to Go	Predicted Total Time
leaving office	0	30	30
reach car, raining	5	35	40
exit highway	20	15	35
behind truck	30	10	40
home street	40	3	43
arrive home	43	0	43

MC vs TD



Changes recommended by TD methods (α =1)





Advantages and Disadvantages

- TD can learn before knowing the final outcome
 - TD learn after each step
 - MC must end the episode
- TD can learn without the final outcome
 - TD incomplete sequences
 - TD continuing envs
 - MC complete sequences
 - MC only episodic envs

Advantages and Disadvantages (2)

MC has high variance, zero bias

- Good convergence
- Not sensitive to initial value
- Simple

TD has low variance, some bias

- More efficient than MC
- TD(0) converges to V_{π}
- (not always for function approximation)
- Sensitive to initial value

Advantages and Disadvantages (3)

TD exploits Markov property

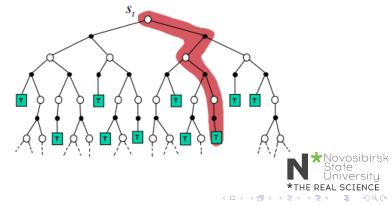
Usually more efficient in Markov envs

MC does not exploit Markov property

Usually more effective in non-Markov envs

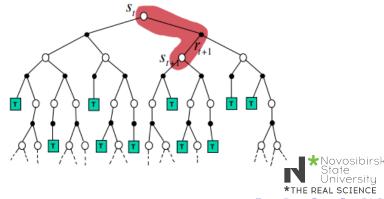
MC Backup

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t - V(S_t))$$



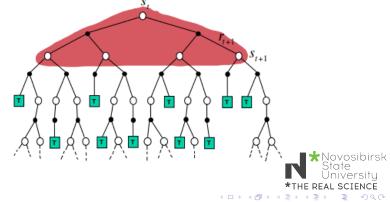
TD Backup

$$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$



DP Backup

$$V(S_t) \leftarrow \mathbb{E}[R_{t+1} + \gamma V(S_{t+1})]$$



Bootstrapping and Sampling

Bootstrapping update involves an estimate

- MC
- DP
- TD

Sampling update sample an expectation

- MC
- DP
- TD

Bootstrapping and Sampling

Bootstrapping update involves an estimate

- MC X
- DP
- TD ✓

Sampling update sample an expectation

- MC
- DP
- TD

22 / 24

²⁶David Silver's Lecture 4

Bootstrapping and Sampling

Bootstrapping update involves an estimate

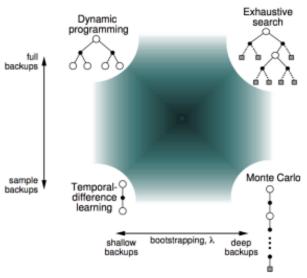
- MC X
- DP
- TD ✓

Sampling update sample an expectation

- MC
- DP X
- TD ✓

²⁶David Silver's Lecture 4

Unified View of RL



vosibirsk xte iversity science

Value and Policy Iteration Lab

https://bit.ly/2JVv6rc

