Model-Free Control²

DOROZHKO Anton

Novosibirsk State University

May 25, 2019

²David Silver's Lecture 5

DOROZHKO Anton (Novosibirsk State Unive

Model-Free Control ³

May 25, 2019 1/31

DOROZHKO Anton (Novosibirsk State Unive

Model-Free Control ⁴

May 25, 2019 2 / 31

Markov Decision Process

Definition

A Markov Decision Process is a tuple $(\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma)$

- \mathcal{S} is a (finite) set of states
- $\bullet \ \mathcal{A}$ is a finite set of actions
- \mathcal{P} is a transition probability matix

$$\mathcal{P}^{a}_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$$

• \mathcal{R} is a reward function :

$$\mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$$

• γ is a discount factor, $\gamma \in [0,1]$

Model-free RL

Previous lecture

- Model-free prediction
- Evaluate value function in unknown MDP

This lecture

- Model-free control
- Optimize value function in unknown MDP

DOROZHKO Anton (Novosibirsk State Unive

Model-Free Control ⁶

May 25, 2019 4 / 31

For most problems, either:

- MDP is unknown, but experience can be sampled
- MDP is known, but is too big to use, execpt by samples (Go)

DOROZHKO Anton (Novosibirsk State Unive

Model-Free Control

May 25, 2019 5 / 31

On and Off-Policy learning

On-policy learning

- "Learn on the job"
- \bullet Learn about policy π from experience sampled from policy π

Off-policy learning

- "Look over someone's shoulder"
- \bullet Learn about policy π from experience sampled from policy β
- β sometimes called behaviour policy

N*Novosibirsk State University *THE REAL SCIENCE

Generalised Policy Iteration

Policy evaluation Estimate V^{π} Policy improvement Generate $\pi' \ge \pi$

DOROZHKO Anton (Novosibirsk State Unive

Model-Free Control

May 25, 2019 7 / 31

Generalised Policy Iteration with MC

Policy evaluation MC policy evaluation ? Policy improvement Greedy policy improvement ?

N*Novosibirsk State University *THE REAL SCIENCE

DOROZHKO Anton (Novosibirsk State Unive

Model-Free Control ¹⁰

May 25, 2019 8 / 31

Greedy policy improvement

• Greedy policy improvement over V(s) requires model of MDP

$$\pi'(s) = arg \max_{a \in A} R^a_s + P^a_{ss'} V(s')$$

• Greedy policy improvement over Q(s, a) is model-free

$$\pi'(s) = rg \max_{a \in A} Q(s, a)$$

DOROZHKO Anton (Novosibirsk State Unive

$\epsilon\text{-}\mathsf{Greedy}$ Exploration

- Simple idea for continual exploration
- All actions are tried with p > 0

$$\pi(a|s) = egin{cases} \epsilon/|A| + 1 - \epsilon & a^* = arg \max_{a \in A} Q(s, a) \ \epsilon/|A| & otherwisex \end{cases}$$

DOROZHKO Anton (Novosibirsk State Unive

ϵ -Greedy Policy Improvement

Theorem

For any ϵ -greedy policy π , the ϵ -greedy policy π' with respect to q_{π} is an improvement, $V^{\pi'}(s) \geq V^{\pi}(s)$

$$\begin{aligned} q_{\pi}(s,\pi'(s)) &= \sum_{a \in A} \pi'(a|s)q_{\pi}(s,a) \\ &= \frac{\epsilon}{|A|} \sum_{a \in A} q_{\pi}(s,a) + (1-\epsilon) \max_{a \in A} q_{\pi}(s,a) \\ &\geq \frac{\epsilon}{|A|} \sum_{a \in A} q_{\pi}(s,a) + (1-\epsilon) \sum \frac{pi(a|s) - \frac{\epsilon}{|A|}}{1-\epsilon} q_{\pi}(s,a) \\ &= \sum_{a \in A} \pi(a|s)q_{\pi}(s,a) = v_{\pi}(s) \\ &\stackrel{\text{Novosibirsk}}{\underset{\text{University}}{\overset{\text{THE REAL SCIENCE}}{\overset{\text{Constrained}}{\overset{\text{THE REAL SCIENCE}}{\overset{\text{Constrained}}{\overset{\text{Const$$

DOROZHKO Anton (Novosibirsk State Univ

Model-Free Control ¹³

May 25, 2019 11/31

MC Policy Iteration

Policy evaluation MC policy evaluation $Q = q_{\pi}$ Policy improvement ϵ -Greedy policy improvement ?

> N*Novosibirsk State University *THE REAL SCIENCE

DOROZHKO Anton (Novosibirsk State Unive

Model-Free Control ¹⁴

May 25, 2019 12/31

MC control

Policy evaluation MC policy evaluation $Q \sim q_{\pi}$ Policy improvement ϵ -Greedy policy improvement ?

> N*Novosibirsk State University *THE REAL SCIENCE

DOROZHKO Anton (Novosibirsk State Unive

Model-Free Control ¹⁵

May 25, 2019 13/31

GLIE

Definition

Greedy in the Limit with Infinite Exploration (GLIE)

• All state-action pairs are explored infinitely many times

$$\lim_{k\to\infty}N_k(s,a)=\infty$$

• The policy converges on a greedy policy

$$\lim_{k\to\infty}\pi_k(a|s)=Q_k(s,a')$$

Example:
$$\epsilon_k = \frac{1}{k}$$

★Novosibirsk State University PFAL SCIENCE

GLIE MC control

- Sample episode using π : $S_1, A_1, R_2, ..., S_T \in \pi$
- For each state S_t and action A_t in the episode

$$egin{aligned} & \mathcal{N}(S_t, A_t) \leftarrow \mathcal{N}(S_t, A_t) + 1 \ & Q(S_t, A_t) \leftarrow Q(S_t, A_t) + rac{1}{\mathcal{N}(S_t, A_t)}(G_t - Q(S_t, A_t)) \end{aligned}$$

• Improve policy based on new Q

$$\epsilon = \frac{1}{k}$$

$$\pi \leftarrow \epsilon - greedy(Q)$$

MC vs TD Control

TD advantages over MC

- lower variance
- online
- incomplete sequences

Idea: use TD instead of MC

- Apply TD to Q(S, A)
- use ϵ -greedy
- update every step

DOROZHKO Anton (Novosibirsk State Unive

Model-Free Control ¹⁸

May 25, 2019 16 / 31

SARSA

$Q(S, A) \leftarrow Q(S, A) + \alpha(R + \gamma Q(S', A') - Q(S, A))$

THE REAL SCIENCE

DOROZHKO Anton (Novosibirsk State Unive

Model-Free Control ¹⁹

May 25, 2019 17 / 31

SARSA control

Policy evaluation SARSA $Q \sim q_{\pi}$ Policy improvement ϵ -Greedy policy improvement

DOROZHKO Anton (Novosibirsk State Unive

Model-Free Control 20

May 25, 2019 18 / 31

On-policy SARSA

 $\begin{array}{l} \mbox{Initialize } Q(s,a), \forall s \in \mathbb{S}, a \in \mathcal{A}(s), \mbox{ arbitrarily, and } Q(\textit{terminal-state}, \cdot) = 0 \\ \mbox{Repeat (for each episode):} \\ \mbox{ Initialize } S \\ \mbox{Choose } A \mbox{ from } S \mbox{ using policy derived from } Q \mbox{ (e.g., ε-greedy)} \\ \mbox{Repeat (for each step of episode):} \\ \mbox{ Take action } A, \mbox{ observe } R, S' \\ \mbox{ Choose } A' \mbox{ from } S' \mbox{ using policy derived from } Q \mbox{ (e.g., ε-greedy)} \\ \mbox{ } Q(S,A) \leftarrow Q(S,A) + \alpha \big[R + \gamma Q(S',A') - Q(S,A) \big] \\ \mbox{ } S \leftarrow S'; \mbox{ } A \leftarrow A'; \\ \mbox{ until } S \mbox{ is terminal} \\ \end{array}$

DOROZHKO Anton (Novosibirsk State Unive

May 25, 2019 19 / 31

Convergence of SARSA

Theorem

Sarsa converges to the oprimal action-values function $Q(s, a) \rightarrow q * (s, a)$, under the following conditions:

- GLIE sequence of policies $\pi_t(a|s)$
- Robbins-Monro step-sizes α_t

*THE REAL SCIENCE

•

n-step Sarsa

• n-steps return

•

$$\begin{array}{ll} n = 1 & (Sarsa) & q_t^{(1)} = R_{t+1} + \gamma Q(S_{t+1}) \\ n = 2 & q_t^{(2)} = R_{t+1} + \gamma Q(S_{t+1}) + \gamma^2 Q(S_{t+2}) \end{array}$$

$$n = \infty$$
 (MC) $q_t^{(T)} = R_{t+1} + \gamma Q(S_{t+1}) + \gamma^{T-1} R_T$

• n-step Q-return

$$q_t(n) = R_{t+1} + \gamma R_{t+2} + \ldots + \gamma^{n-1} R_{t+n} + \gamma^n Q(S_{t+n})$$

• n-step SARSA updates

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(q_t^{(n)} - Q(S_t, A_t))$$

$SARSA(\lambda)$

DOROZHKO Anton (Novosibirsk State Unive

<ロト <問ト < 目と < 目と

Off-Policy Learning

- Evaluate $\pi(a|s)$ to compute $V^{\pi}(s)$ or $Q^{pi}(s,a)$
- \bullet While taking actions by behaviour policy β

$$S_1, A_1, R_2, \dots, S_T \sim \beta$$

Profit ?

- Learn from humans / other agents
- Re-use previous experience from π_1 , π_2 , ..., π_{t-1}
- Learn optimal policy following exploratory policy
- Learn multiple policy followint one policy

Importance Sampling

Estimate the expectation of a different distribution

$$\mathbb{E}_{X \sim P}[f(X)] = \sum P(X)f(X)$$
$$= \sum Q(X)\frac{P(X)}{Q(X)}f(X)$$
$$= \mathbb{E}_{X \sim Q}[\frac{P(X)}{Q(X)}f(X)]$$

DOROZHKO Anton (Novosibirsk State Unive

Image: A matched by the second sec

Importance Sampling for Off-policy MC

- Use returns G_t from β to evaluate π
- Weight G_t according to similarity between policies
- along the whole episode

$$G_t^{\pi/\beta} = \frac{\pi(A_t|S_t)}{\beta(A_t|S_t)} \frac{\pi(A_{t+1}|S_{t+1})}{\beta(A_{t+1}|S_{t+1})} \cdots \frac{\pi(A_T|S_T)}{\beta(A_T|S_T)}$$

update towards corrected return

$$V(S_t) \leftarrow V(S_t) + \alpha(G_t^{\pi/\beta} - V(S_t))$$

- Problem if π is not dominated by β (β is zero, when pi is non-zero)
- Increase Variance

Importance Sampling for Off-policy TD

- use TD targets from β to eval π
- use IS to weight TD target $R + \gamma V(S')$
- only 1 IS correction

$$V(S_t) \leftarrow V(S_t) + \alpha \left(\frac{\pi(A_t|S_t)}{\beta(A_t|S_t)} (R_{t+1} + \gamma V(S_{t+1})) - V(S_t) \right)$$

- lower Var than MC IS
- Policies need to be somewhat similar over only a single step

Q-learning

- off-policy learning of Q(s, a)
- No IS is required
- Next action $A_{t+1} \sim \beta(.|S_t)$
- Consider alternative successor $A' \sim \pi(.|S_t)$
- update $Q(S_t, A_t)$ towards alternative

 $Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha(\mathbf{R}_{t+1} + \gamma \mathbf{Q}(S_{t+1}, A') - Q(S_t, A_t))$

Off-Policy Control with Q-learning

- Improve both behabiour and target
- Target

$$\pi(S_{t+1}) = \arg \max_{a'} Q(S_{t+1}, a')$$

- Behaviour $\beta \epsilon$ -greedy Q(s, a))
- The Q-learning target simplifies:

$$R_{t+1} + \gamma Q(S_{t+1}, A')$$

= $R_{t+1} + \gamma Q(S_{t+1}, \arg \max_{a'} Q(S_{t+1}, a'))$
= $R_{t+1} + \max_{a'} \gamma Q(S_{t+1}, a')$

Q-learning Control Algorithm

 $Q(S, A) \leftarrow Q(S, A) + \alpha(R + \gamma Q(S', A') - Q(S, A))$

DOROZHKO Anton (Novosibirsk State Unive

Model-Free Control ³¹

May 25, 2019 29 / 31

3

Relationship between DP and TD

DOROZHKO Anton (Novosibirsk State Unive

Model-Free Control 32

May 25, 2019 30 / 31

Relationship between DP and TD

Full Backup (DP)	Sample Backup (TD)
Iterative Policy Evaluation	TD Learning
$V(s) \leftarrow \mathbb{E}\left[R + \gamma V(S') \mid s ight]$	$V(S) \stackrel{lpha}{\leftarrow} R + \gamma V(S')$
Q-Policy Iteration	Sarsa
$Q(s, a) \leftarrow \mathbb{E}\left[R + \gamma Q(S', A') \mid s, a ight]$	$Q(S,A) \stackrel{lpha}{\leftarrow} R + \gamma Q(S',A')$
Q-Value Iteration	Q-Learning
$Q(s, a) \leftarrow \mathbb{E}\left[R + \gamma \max_{a' \in \mathcal{A}} Q(S', a') \mid s, a ight]$	$Q(S,A) \stackrel{lpha}{\leftarrow} R + \gamma \max_{a' \in \mathcal{A}} Q(S',a')$

where $x \stackrel{\alpha}{\leftarrow} y \equiv x \leftarrow x + \alpha(y - x)$

(日) (四) (日) (日) (日)