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Class information & Resources

<

DOROZHKO Anton

Course Instructor
dorozhko.a@gmail.com

Course website : comming soon |
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Communications

How to communicate

@ We believe students often learn an enormous amount from each
other as well as the course staff.

@ We will use Piazza to facilitate discussion and peer learning
@ Please use Piazza for all questions

Piazza : comming soon
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Course logistics
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Grading

Assignment 1 : Math tasks
Assignment 2 : Q-learning lab

Project : Read paper + write report (in groups of 2)
Quiz
Deadlines and Marks to be defined

°
°
@ Assignment 3 : Policy optimization lab
°
°
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Preliminary polls

© What do you know about RL ?

© Who passed which courses 7

© What models have you tried to code 7

© Your level of experience with Python/Tensorflow/PyTorch ?

AT s !
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Introduction

Outline

© Introduction

DOROZHKO Anton (Novosibirsk State Univg
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What is Reinforcement Learning ?

Learn to make good sequence of decisions

N 1 1
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Introduction

Many Faces of Reinforcement Learning
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Example: TD-Gammon Tesauro, 1992-1995

\
- estimated state value

Y

RSB LF RO LI CLEE RO NLOE LOE G WA

— (= prob of winning)
o -
—
o Action selection
-E by a shallow search

Start with a random Network

Play millions of games against itself
Learn a value function from this simulated experience

Six weeks later it's the best player of backgammon in the world
QOriginally used expert handcrafted features, later repeated with raw board positions
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Why bother learning RL now?

@ Interpret rich sensoty inputs

@ Choose complex actions

CE
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Introduction

Why bother learning RL now?

Conv 1: Edge+Blob Conv 3: Texture

Conv 5: Object Parts

Fe&: Object Classes

Figure: Deep Learning provides perception

joirsk

University
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Why bother learning RL now?

Reinforcement learning provides a formalism for
behavior

decisions {actions)

ﬁ il Sch lmanetnl 14815

 / EH

LONSEQUENCES
observations
rewards

Levine®, Finn®, ot al. "16
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Introduction

Deep Reinforcement Learning

sensorimotor loop

vosibirsk
DOROZHKO Anton (Novosibirsk State Univg

e
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Alpha GO and DQN

nature.

ALL SYSTEMS GO

Figure: Self-play + MCTS on Go

Figure: DQN on Atari games (2015) (2016)
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OpenAl 5

OpenAl5 blog

[Wia}
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https://openai.com/blog/openai-five/

OpenAl 5

OpenAl5 blog
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https://openai.com/blog/openai-five/

AlphaStar

N 5 o
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DeepMind blog about AlphaStar *THE REAL SCIENCE
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https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

AlphaStar
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https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

Environment

Action
as

State, Reward
St T

Environment

Agent-environment interaction loop.

N I Siti

*THE REAL SCIENCE

DIOINOVA INOW NN M WS I EMUANE Intorduction to Reinforcement Learning May 12, 2020 21 /46



Reinforcement learning

Markov Decision Process MDP

MDP is a tuple (S, A4,P,R) R
t
@ S - set of states
© A - set of actions
Q@ P:SxA— A(S) - transition function A
p(st+1|st7 at) t
Q R:S x A— R- rewards )
Markov property
P(rt; 5t+1|507 do, rOa ooy Sty at) - P(rt: 5t+1|st7 at) J

<

1 N
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Reinforcement learning

Discounted rewards

Gt = R: + YRty1... = Z’YkRH-k-i-l
k=0

max E,[Go]
T
9 S — A - agent policy
Interaction
action
Agent Environement

\_/

observation, reward
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@ Optimization
@ Delayed consequences
@ Exploration

@ Generalization

CE
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Optimization

@ Goal is to maximaze the reward
@ By finding optimal policy
@ Or at least a good policy
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Delayed Consequences

@ Your current decisions affect your trajectories and future rewards

e Creating you portfolio
e Finding key in Montezuma's revenge

@ Challenges:

e Long-term planning
o Temporal credit assignment (what caused later rewards 7)

1
E

N |
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Exploration

@ Agent learns by making decisions
@ Censored data

e Only have a reward for decision MADE
e Don’t know what would have happened

@ Decisions impact learning

e If we choose to go to another university
e we will have completely different experience

CE
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Generalization

@ Policy is mapping: S — A
@ Why not just hard code ?

ity
*THE REAL SCIENCE

DJO] VAL [NOWNNL MO VBTN SIEWMUIIYE Intorduction to Reinforcement Learning May 12, 2020 28 /46



Rewards

@ A reward R; is a scalar feedback
@ Indicates how well agent is doing at step t

RL is based on reward hypothesis

Reward hypothesis
All goals can be described by the maximisation of expected
cumulative reward

ale ~ by
N > Sikirst
|
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Exaples of Rewards

@ Fly stunt manoeuvres in helicopter

e + reward for following desired trajectory
e - for crashing

@ Backgammon
e + for winning
e - for losing
@ Manage investment portfolio
e + for making more money
@ Make a humanoid robot walk

e -+ reward for forward motion
e - reward for falling over N
U
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Teaching agent

@ Student initially does not know addition (easier) not subtraction
(harder)

@ Teaching agent can provide activities about addition or
subtraction

@ Agent gets rewarded for student performance

e +1 if student gets problem right
e -1 if get problem wrong

N Bk

“sity
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When optimization gone WRONG

Block moving
A robotic arm trained to slide a block to a target position on a table
achieves the goal by moving the table itself.

Other examples: https://bit.ly/2skJE9C
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https://bit.ly/2skJE9C

OpenAl Gym !

Agent Environement

\/

observation, reward

.make ("Taxi-wl")

*IHE HEAL SULENLCE

https://gym.openai.com/
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https://gym.openai.com/

Google Colaboratory

_—
jupyter
o

Lab0: https://bit.ly/2YHwWUZd
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https://bit.ly/2YHwUZd

Taxi-v2

Rendering:
@ blue: passenger
@ magenta: destination
@ yellow: empty taxi
@ green: full taxi _
@ other letters (R, G, B and Y): locations N
Actions: ( 0: south, 1: north, 2: east, 3: west, 4: plckupTHSREdfo’ﬁﬁFF)E
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Taxi-v2

You receive +20 points for a successful dropoff, and lose 1 point for
every timestep it takes. There is also a 10 point penalty for illegal
pick-up and drop-off actions.

N U
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How do we solve it?

e Play a few rollouts
e Update your policy
@ Repeat

CE
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Cross Entropy Method

CEM visualization 2

N vositirsk
] sity

*THE REAL SCIENCE
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https://github.com/yandexdataschool/Practical_RL/tree/master

Cross Entropy Method

e Initialize policy (e.g. uniformly)
@ Repeat:

e Sample N rollouts
o Pick M best
o Update policy to prioritize best (states, actions)

CE
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CEM tabular case

@ Policy is a matrix:

m(a|s) = P(make action a in state s)

N 1 1
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CEM tabular case

@ Policy is a matrix:
m(a|s) = P(make action a in state s)

@ Sample N games with that policy

o Get best games

[(s0, @0), (51, @1), ---, (Sk, ak)]

N 1 1
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CEM tabular case

@ Policy is a matrix:
m(a|s) = P(make action a in state s)

@ Sample N games with that policy

o Get best games
[(S0, @0), (51, 1), -+, (Sk» ak)]
e Update policy

mer1(als) Z(57:31)6best[5t = s][a; = 4]
t+1 = N
Z(S:B)Ebest[st = 5] N :

VTS
*THE REAL SCIENCE

DJO] VAL [NOWNNL MO VBTN SIEWMUIIYE Intorduction to Reinforcement Learning May 12, 2020 40 /46



Cross Entropy Method

CartPole-v0

DOROZHKO Anton (Novosibirsk State Univg
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Cross Entropy Method

Infinite/large/continuous state space

150

200

59

300

350

400 T T T T \
o 100 00 300 400 500 ]

printi{ 0bservation Space {1, format{env.observation space))
print{'Observation sample {}'.format{env.observation space.samplai)}])
print{*Action space {}'.format{env.action space))

print{'Action sample {}'.formati{env.action space.sample(}})

Observatlion Space Box(4,)

Observation sample [3.30649514e+08 2.4360515e+38 2.9091296=-01 8.4093091e+37]
Action space Discrete(2) ioirsk
Action sample ©

N Un ¥
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Approximate Crossentropy

@ Approximate function my(als)
@ Linear model / Random Forest / NN
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Approximate Crossentropy

@ Best state action pairs
[(s0, @0), (51, 1), -+, (Sk» ak)]

@ Maximize likelihood of those tuples

T = arg maxz logm(a;i|s;)

CE

*THE REAL SCIEN

DJO] VAL [NOWNNL MO VBTN SIEWMUIIYE Intorduction to Reinforcement Learning May 12, 2020 44 / 46



Approximate Crossentropy

Initialize NN wy < random
@ Sample N rollouts

@ Best (s,a) = [(s0, a0), (51, a1), ---, (Sk, ak)]

° wiy1 = w; +aV) logr(als)

DJO] VAL [NOWNNL MO VBTN SIEWMUIIYE Intorduction to Reinforcement Learning
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Approximate Crossentropy

Initialize NN nn = MLPClassifier(...)
@ Sample N rollouts

@ Best (s,a) = [(s0, a0), (51, a1), ---, (Sk, ak)]

e nn.fit(states, actions)

"’éﬂ\
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