Value and Policy Iteration

DOROZHKO Anton

Novosibirsk State University

May 16, 2020

Outline

- Markov decision processes
- Policy Iteration
- Value Iteration
- Other

Intorduction to MDPs

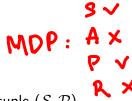
- MDP describes environment
- Fully observable state completely characterises the process
- Almost all RL problems can be formalised as MDPs

Definition

A state S_t is Markov iff

$$\mathbb{P}[S_{t+1}|S_t] = \mathbb{P}[S_{t+1}|S_t], S_t]$$

- captures all relevant information
- can throw away the history if we know state

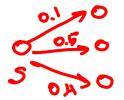


Definition

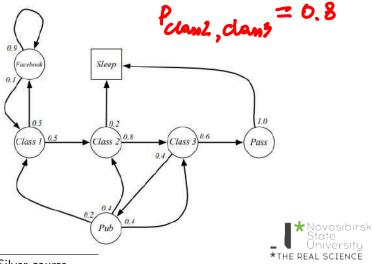
A Markov Process (or Markov Chain) is a tuple $(\mathcal{S},\mathcal{P})$

- ullet ${\cal S}$ is a (finite) set of states
- ullet ${\cal P}$ is a transition probability matix

$$\mathcal{P}_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s]$$



Student's MP 1



¹from David Silver course

Markov Reward Process

MDP 5

Definition

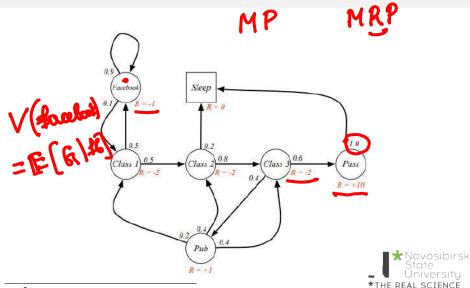
A Markov Reward Process is a tuple (S, P, R, γ)

- ullet ${\cal S}$ is a (finite) set of states
- ullet ${\cal P}$ is a transition probability matix

$$\mathcal{P}_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s]$$

- \mathcal{R} is a reward function : $\mathcal{R}_s = \mathbb{E}[R_{t+1}|S_t = s]$
- γ is a discount factor, $\gamma \in [0,1]$

Student's MRP ²

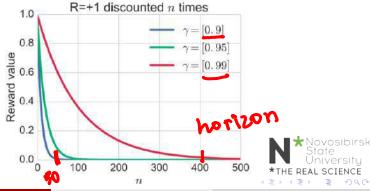


²from David Silver course

Discounted Reward

cumulative reward
$$G_t = R_t + \gamma R_{t+1}... = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

If max
$$R=1$$
 then $G_0=\sum \gamma^k=rac{1}{1-\gamma}$



Discounted Reward

$$G_t = R_t + \gamma R_{t+1} \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

$$G_t = R_t + \gamma G_{t+1}$$

Value Function

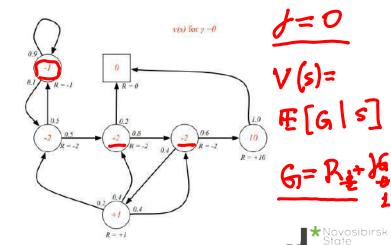
Definition

The state value function V(s) of an MRP is the expected return starting from state s

$$V(s) = \mathbb{E}[G_t|S_t = s]$$

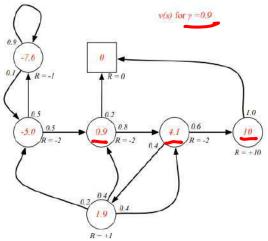
V(s) gives the long-term value of state s

State value function's for Student MRP ³



³from David Silver course

State value function's for Student MRP ⁴



Bellman Equation for Value Function

Decomposition:

- immediate reward R_{t+1}
- discounted value of the next state $\gamma V(S_{t+1})$

$$V(s) = \mathbb{E}[G_t | S_t = s]$$

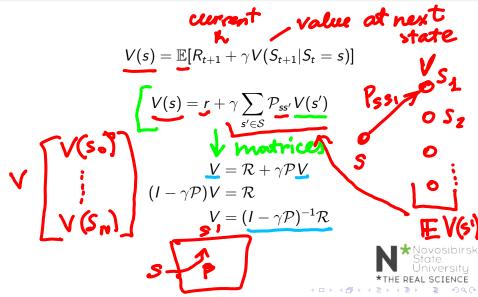
$$= \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + ... | S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma (R_{t+2} + \gamma R_{t+3} + ...) | S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma G_{t+1} | S_t = s]$$

$$= \mathbb{E}[R_{t+1} + \gamma V_{t+1} | S_t = s]$$

Bellman equation MRP



$$V = \mathcal{R} + \gamma \mathcal{P} V$$

 $(I - \gamma \mathcal{P})V = \mathcal{R}$
 $V = (I - \gamma \mathcal{P})^{-1} \mathcal{R}$

- $\mathcal{O}(n^3)$ for n states
- small MLPs
- Other options:
 - Dynamic programming (DP)
 - Monte-Carlo evaluation (MC)
 - Temporal-Difference learning (TD)

Markov Decision Process

MP MRP

Definition

A Markov Decision Process is a tuple $(\mathcal{S}, \underline{\mathcal{A}}, \mathcal{P}, \mathcal{R}, \gamma)$

- ullet S is a (finite) set of states
- ullet \mathcal{A} is a finite set of actions
- ullet ${\cal P}$ is a transition probability matix

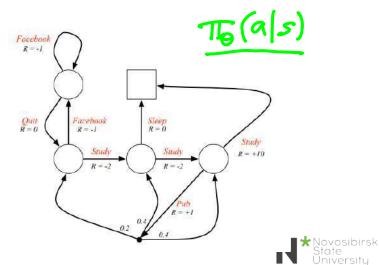
$$\mathcal{P}^{\mathsf{a}}_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = \mathsf{a}]$$

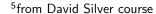
ullet $\mathcal R$ is a reward function :

$$\mathcal{R}_{s}^{\mathsf{a}} = \mathbb{E}[R_{t+1}|S_{t}=s, A_{t}=a]$$

• γ is a discount factor, $\gamma \in [0, 1]$

Student's MDP ⁵





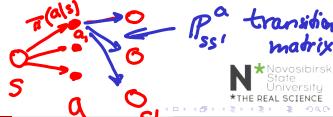
*THE REAL SCIENCE

Policy

Definition

A policy π is a distribution over actions given states

$$\pi(a|s) = \mathbb{P}[A_t = a|S_t = s]$$



18 / 41

Value Function

State-value function

The state value function $V_{\pi}(s)$ of an MDP is the expected return starting from state s, and then following policy π

$$V_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

Action-value function

The action-value function $Q_{\pi}(s, a)$ is expected return starting from state s, taking action a, and then following policy pi

$$Q_{\pi}(s,a) = \mathbb{E}_{\pi}[G_t|S_t = s, A_t = a]$$

Notation variants

 $\bullet \ \tau = (s_0, a_0, s_1, a_1, ..., a_{T-1}, s_T)$

• $p_{\theta}(\tau) = p(s_0) \prod_{t=0}^{T-1} \underline{\tau}_{\theta}(a_t|s_t) p(s_{t+1}|s_t, a_t)$

$$\mathbb{E}[G_0] = \mathbb{E}[R_0 + \gamma R_1 + ... + \gamma' R_T]$$

$$= \mathbb{E}[G_0 | \pi_{\theta}]$$

$$= \mathbb{E}_{\pi_{\theta}}[G_0]$$

$$= \sum_{t=0}^{T} \mathbb{E}_{(s_t, a_t) \sim p_{\theta}}[\gamma^t R_t]$$

$$= \mathbb{E}_{\tau \sim p_{\theta}(\tau)}[G(\tau)]$$
Collow: trujeway

choice & transition Molicy Iteration

Jovosibirsk

20 / 41

Bellman Expectation Equation

Decomposition into immediate reward plus discounted value in next state

$$V_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma V_{\pi}(S_{t+1})|S_{t} = s]$$

$$Q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$

Optimal Value Functions

Definition

The optimal state-value function $V_{\underline{*}}(s)$ is the maximum value function over all policies

$$V_*(s) = \max_{\pi} V_{\pi}(s)$$

The optimal action-value function $Q_*(s,a)$ is the maximum action-value function over all policies

$$Q_*(s,a) = \max_{\pi} Q_{\pi}(s,a)$$

Optimal Policy

Partial ordering over policies

$$\pi \geq \pi'$$
 if $V_{\pi}(s) \geq V_{\pi'}(s)$ $\forall s$

Theorem

For any Markov Decision Process (MDP)

- There exists an optimal policy π_* that is better than or equal to all other policies $\pi_* \geq \pi$, $\forall \pi$
- All optimal policies achieve the optimal values function $V_{\pi_*}(s) = V_*(s)$
- All optimal policies achieve the optimal action-value function $Q_{\pi_*}(s,a) = Q_*(s,a)$

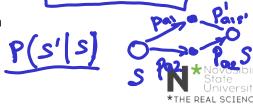
Iterative algorithm

- Initialize $V_0(s) = 0$ for all s
- for k = 1 until convergence
 - ullet for all $s\in\mathcal{S}$

cur rowerd

$$V_k(s) = R(s) + \gamma \sum_{s' \in \mathcal{S}} P(s'|s) V_{k-1}(s')$$

• $\mathcal{O}(|S|^2)$ for each iteration



MDP + Policy

policy evaluation

- MDP + $\pi(a|s)$ = Markov Reward Process
- MRP($S, \mathcal{R}^{\pi}, \mathcal{P}^{\pi}, \gamma$), where

$$R^{\pi}(s) = \sum_{a \in A} \pi(a|s)R(s,a)$$
 $P^{\pi}(s'|s) = \sum_{a \in A} \pi(a|s)P(s'|s,a)$

We can reuse iterative algorithm

Iterative algorithm

- Initialize $V_0(s) = 0$ for all s
- for k=1 until convergence
 - for all $s \in \mathcal{S}$

of for all
$$s$$

nivergence

 $P(s, a)$

$$V_k^{\pi}(s) = r(s, \underline{\pi(s)}) + \gamma \sum_{s' \in \mathcal{S}} p(s'|s, \pi(s)) V_{k-1}^{\pi}(s')$$

• Bellman backup for particular policy

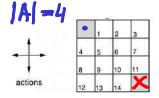
MDP Control

Compute optimal policy

$$\pi^*(s) = \underset{\pi}{\operatorname{arg max}} V^{\pi}(s)$$

• There exists a unique value function

Gridworld example



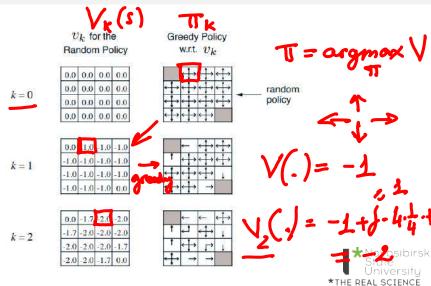
r = -1 on all transitions

■ Undiscounted episodic MDP $(\gamma = 1)$

G = R6+R-611+...

- Nonterminal states 1, ..., 14
- One terminal state (shown twice as shaded squares)
- Actions leading out of the grid leave state unchanged
- Reward is -1 until the terminal state is reached
- Agent follows uniform random policy

Gridworld example



29 / 41

Policy Iteration(PI)

- i = 0
- Initialize $\pi_0(s)$ randomly for all s
- While i == 0 or $||\pi_i \pi_{i-1}|| > 0$
 - $V^{\pi} \leftarrow \mathsf{MDP}$ policy evaluation of $\underline{\pi_i}$
 - $\pi_{i+1} \leftarrow \text{Policy improvement}$
 - i = i + 1

greedy of V

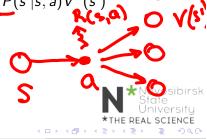
Q function

Action value or State-Action value or Q-function

$$Q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma q_{\pi}(S_{t+1}, A_{t+1}) | S_t = s, A_t = a]$$

$$Q^{\pi}(s,a) = R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V^{\pi}(s')$$

Take action a, then follow policy π



Policy Improvement

- Compute Q function of π_i
 - For $s \in S$ and $a \in A$:

$$Q^{\pi_i}(s,a) = R(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V^{\pi_i}(s')$$

• Compute new policy π_{i+1}

$$\pi_{i+1}(s) = arg \max_{a} Q^{\pi_i}(s, a) \quad \forall s \in S$$

Monotonic Improvement in Policy

$$V^{\pi_i}(s) \leq \max_{a} Q^{\pi_i}(s, a)$$

$$= \max_{a} R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V^{\pi_i}(s')$$

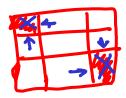
$$= R(s, \pi_{i+1}(s)) + \gamma \sum_{s' \in S} P(s'|s, \pi_{i+1}(s)) V^{\pi_i}(s')$$

$$\leq R(s, \pi_{i+1}(s)) + \gamma \sum_{s' \in S} P(s'|s, \pi_{i+1}(s)) \max_{a'} Q^{\pi_i}(s', a')$$
continue to expand $a' = \pi_{i+1}(s')$

 $=V^{\pi_{i+1}}(s)$

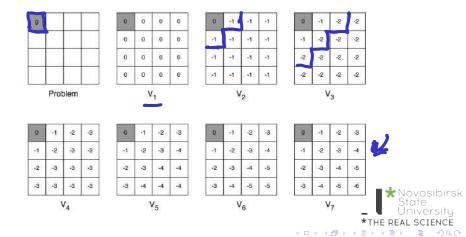
Value Iteration

- Policy iteration : computes optimal value and policy
- Value Iteration :
 - Optimal value for state s if k episodes left
 - Iterate to consider longer episodes



Gridworld example

Example: Shortest Path



Value Iteration

- k = 1
- Init $V_0(s) = 0$
- Look until convergence / T

$$V_{k+1}(s) = \max_{a} R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V_k(s')$$

Operator view

$$V_{k+1} = BV_k$$

•
$$\pi_{k+1}(s) = arg \max_{a} R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V_k(s')$$

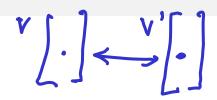
Contraction Operator

- Let O be an operator, and ||.|| denote any norm of x
- if $||OV OV'|| \le ||V V'||$ then O is a contraction operator
- O has fixed point x
- Ox = x

sketch

Proof: Bellman Backup is a Contraction on V for

 $\gamma < 1$



$$||V - V'|| = \max_{s} ||V(s) - V'(s)||$$

Exercise

$$V(s) = R(s,\pi(s)) + \sum_{i=1}^{n} R(s,\pi(s)) + \sum_{i=1}^{$$

POMDP

A Partially Observable Markov Decision Process is an MDP with hidden states. It is HMM with actions.

Figure: Doom Classic

POMDP

Definition

A POMDP is a tuple $(S, A, \overset{\circ}{O}, P, R, \overset{z}{Z}, \gamma)$

- S is a (finite) set of states hidden
- \bullet \mathcal{A} is a finite set of actions
- ullet $\mathcal O$ is a finite set of observations
- \mathcal{P} is a transition probability matix $\mathcal{P}_{ss'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$
- \mathcal{R} is a reward function : $\mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$
- ullet \mathcal{Z} is an observation function $\mathcal{Z}^a_{s'o} = \mathbb{P}[O_{t+1} = o | S_t = s], A_t = a]$
- γ is a discount factor, $\gamma \in [0,1]$

Questions?

The only stupid question is the one you were afraid to ask but never did
- Rich Sutton

