Model-Free Q-learning with MC and TD $^{\rm 2}$

DOROZHKO Anton

Novosibirsk State University

May 20, 2020

²David Silver's Lecture 4

DOROZHKO Anton (Novosibirsk State Unive Model-Free Q-learning with MC and TD ³

May 20, 2020 1 / 24

Markov decision processes

DOROZHKO Anton (Novosibirsk State Univer Model-Free Q-learning with MC and TD 4

May 20, 2020 2 / 24

Markov Decision Process

Definition

A Markov Decision Process is a tuple (S, A, P, R, γ)

- \mathcal{S} is a (finite) set of states
- $\bullet \ \mathcal{A}$ is a finite set of actions
- \mathcal{P} is a transition probability matix

$$\mathcal{P}^{a}_{ss'} = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$$

• \mathcal{R} is a reward function :

$$\mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$$

•
$$\gamma$$
 is a discount factor, $\gamma \in [0,1]$

Recall Policy Iteration

Policy Iteration (using iterative policy evaluation) for estimating $\pi \approx \pi_*$ 1. Initialization $V(s) \in \mathbb{R}$ and $\pi(s) \in \mathcal{A}(s)$ arbitrarily for all $s \in S$ 2. Policy Evaluation Loop: $\Delta \leftarrow 0$ Loop for each $s \in S$: $v \leftarrow V(s)$ $V(s) \leftarrow \sum_{s' = r} p(s', r \mid s, \pi(s)) [r + \gamma V(s')]$ $\Delta \leftarrow \max(\Delta, |v - V(s)|)$ until $\Delta < \theta$ (a small positive number determining the accuracy of estimation) 3. Policy Improvement

 $\begin{array}{l} policy-stable \leftarrow true \\ \text{For each } s \in \mathbb{S}: \\ old-action \leftarrow \pi(s) \\ \pi(s) \leftarrow \arg\max_a \sum_{s',r} p(s',r \mid s,a) [r + \gamma V(s')] \\ \text{If } old-action \neq \pi(s), \text{ then } policy-stable \leftarrow false \\ \text{If } policy-stable, \text{ then stop and return } V \approx v_* \text{ and } \pi \approx \pi_*; \text{ else go to } 2 \end{array}$

May 20, 2020 4 / 24

SCIENCE

D

Recall : Value Iteration

Value Iteration, for estimating $\pi \approx \pi_*$

Algorithm parameter: a small threshold $\theta > 0$ determining accuracy of estimation Initialize V(s), for all $s \in S^+$, arbitrarily except that V(terminal) = 0

Loop:

```
\begin{array}{l|l} \Delta \leftarrow 0 \\ | \text{ Loop for each } s \in \mathbb{S}: \\ | v \leftarrow V(s) \\ | V(s) \leftarrow \max_a \sum_{s',r} p(s',r \,|\, s,a) \left[r + \gamma V(s')\right] \\ | \Delta \leftarrow \max(\Delta, |v - V(s)|) \\ | \text{ until } \Delta < \theta \end{array}
Output a deterministic policy, \pi \approx \pi_*, such that \pi(s) = \operatorname{argmax}_a \sum_{s',r} p(s',r \,|\, s,a) \left[r + \gamma V(s')\right]
```


PI vs VI

Comparison⁸

Figure 4.3: Policy iteration (using iterative policy evaluation) for v_c. This algorithm has a subtle bug, in that it may never terminate if the policy continually switches between two or more policies that are equally good. The bug can be fixed by adding additional flags, but it makes the pseudocode so ugly that it is not worth it: >)

⁸Stackoverflow

DOROZHKO Anton (Novosibirsk State Unive Model-Free Q-learning with MC and TD ^G

May 20, 2020 6 / 24

N*Novosibirsk State University *THE REAL SCIENCE

optimal value

function

Monte-Carlo RL

- MC learns directly from episodes of experience
- Model-free: no knowledge of

$$\mathcal{P}^{a}_{ss'}$$
 or \mathcal{R}

- complete episodes
- idea : value = mean return
- Caveat: only episodic MDPS episodes must terminate

MC Evaluation

• Goal: learn V_{π} from episodes under policy π

$$S_1, A_1, R_2, \dots, S_k \sim \pi$$

• Total discounted reward

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

Value function

$$V_{
m pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

MC Evaluation

• Goal: learn V_{π} from episodes under policy π

$$S_1, A_1, R_2, \dots, S_k \sim \pi$$

• Total discounted reward

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{T-1} R_T$$

Value function

$$V_{
hoi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

May 20, 2020

8/24

 Monte-Carlo policy evaluation uses empirical mean return instead of expected return

¹¹David Silver's Lecture 4

DOROZHKO Anton (Novosibirsk State Unive Model-Free Q-learning with MC and TD 12

First-Visit Monte-Carlo Policy Evaluation

- To evaluate state s
- The first time-step t that state s is visited in each episode
- N(s) = N(s) + 1
- $S(s) = S(s) + G_t$
- V(s) = S(s)/N(s)
- By law of large numbers $V(s) o V^{\pi}(s)$ as $N(s) o \infty$

Incremental Mean

$$\mu_{k} = \frac{1}{k} \sum_{j=1}^{k} x_{j}$$

$$= \frac{1}{k} \left(x_{k} + \sum_{j=1}^{k-1} x_{j} \right)$$

$$= \frac{1}{k} (x_{k} + (k-1)\mu_{k-1})$$

$$= \mu_{k-1} + \frac{1}{k} (x_{k} - \mu_{k-1})$$

DOROZHKO Anton (Novosibirsk State Unive Model-Free Q-learning with MC and TD $^{
m 14}$

May 20, 2020 10 / 24

*****THE REAL SCIENCE

★Novosibirsk State University Update V(s) incrementally after episode S₁, A₁, R₂, ..., S_T
For each state S_t with return G_t

$$egin{aligned} &\mathcal{N}(S_t) = \mathcal{N}(S_t) + 1 \ &\mathcal{V}(S_t) = \mathcal{V}(S_t) + rac{1}{\mathcal{N}(S_t)}(G_t - \mathcal{V}(S_t)) \end{aligned}$$

• In non-stationary problems: running mean

$$V(S_t) = V(S_t) + \alpha(G_t - V(S_t))$$

Temporal-Difference Learning

- TD learns from episodes
- model-free
- incomplete episodes, bootstrappping
- Update a guess towards a guess

MC and TD

- Goal: learn V_{π} online from experience under policy π
- Incremental every-visit MC

•
$$V(S_t) = V(S_t) + \alpha(\mathbf{G}_t - V(S_t))$$

- Simplest TD : TD(0)
 - Update $V(S_t)$ toward estimated return $R_{t+1} + \gamma V(S_{t+1})$

$$V(S_t) = V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$$

•
$$R_{t+1} + \gamma V(S_{t+1})$$
 - TD target
• $\delta_t = R_{t+1} + \gamma V(S_{t+1} - V(S_t))$ - TD error

*THE REAL SCIENCE ・ こ ・ こ こ ・ こ ・ つ へ ペ May 20, 2020 13 / 24

Novosibirsk

Driving Home Example

State	Elapsed Time (minutes)	Predicted Time to G	l Predicted o Total Time	
leaving office	0	30	30	
reach car, raining	5	35	40	
exit highway	20	15	35	
behind truck	30	10	40	
home street	40	3	43	
arrive home	43	0	43	
		٩	Novosibirs State University *THE REAL SCIENCE □ > < @> < ≥> < ≥> < ≥> ><	°, ⊳

DOROZHKO Anton (Novosibirsk State Unive Model-Free Q-learning with MC and TD 18

May 20, 2020 14 / 24

MC vs TD

Changes recommended by Monte Carlo methods (α =1)

Changes recommended by TD methods (α =1)

N° State State University
*THE REAL SCIENCE

15 / 24

May 20, 2020

DOROZHKO Anton (Novosibirsk State Unive Model-Free Q-learning with MC and TD 19

Advantages and Disadvantages

• TD can learn before knowing the final outcome

- TD learn after each step
- MC must end the episode
- TD can learn without the final outcome
 - TD incomplete sequences
 - TD continuing envs
 - MC complete sequences
 - MC only episodic envs

16 / 24

May 20, 2020

DOROZHKO Anton (Novosibirsk State Unive Model-Free Q-learning with MC and TD 2

Advantages and Disadvantages (2)

MC has high variance, zero bias

- Good convergence
- Not sensitive to initial value
- Simple

TD has low variance, some bias

- More efficient than MC
- TD(0) converges to V_{π}
- (not always for function approximation)
- Sensitive to initial value

17 / 24

May 20, 2020

Advantages and Disadvantages (3)

TD exploits Markov property

- Usually more efficient in Markov envs
- MC does not exploit Markov property
 - Usually more effective in non-Markov envs

MC Backup

TD Backup

$V(S_t) \leftarrow V(S_t) + \alpha(R_{t+1} + \gamma V(S_{t+1}) - V(S_t))$

DP Backup

Bootstrapping and Sampling

Bootstrapping update involves an estimate

- MC
- DP
- TD

Sampling update sample an expectation

- MC
- DP
- TD

22 / 24

May 20, 2020

Bootstrapping and Sampling

Bootstrapping update involves an estimate

- MC X
- DP 🗸
- TD 🗸

Sampling update sample an expectation

- MC
- DP
- TD

DOROZHKO Anton (Novosibirsk State Unive Model-Free Q-learning with MC and TD 2

May 20, 2020 22 / 24

Bootstrapping and Sampling

Bootstrapping update involves an estimate

- MC 🗡
- DP 🗸
- TD 🗸

Sampling update sample an expectation

- MC 🗸
- DP X
- TD 🗸

²⁶David Silver's Lecture 4

22 / 24

May 20, 2020

Unified View of RL

Value and Policy Iteration Lab

https://bit.ly/2JVv6rc

DOROZHKO Anton (Novosibirsk State Unive Model-Free Q-learning with MC and TD 29

May 20, 2020 24 / 24