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Markov decision processes

Markov Decision Process

Definition

A Markov Decision Process is a tuple (S,A,P ,R, γ)

S is a (finite) set of states

A is a finite set of actions

P is a transition probability matix

Pa
ss′ = P[St+1 = s ′|St = s,At = a]

R is a reward function :

Ra
s = E[Rt+1|St = s,At = a]

γ is a discount factor, γ ∈ [0, 1]
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PI vs VI

Recall Policy Iteration
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PI vs VI

Recall : Value Iteration
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PI vs VI

Comparison 8

8Stackoverflow
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https://stackoverflow.com/questions/37370015/what-is-the-difference-between-value-iteration-and-policy-iteration


MC and TD

Monte-Carlo RL

MC learns directly from episodes of experience

Model-free: no knowledge of

Pa
ss′ or R

complete episodes

idea : value = mean return

Caveat: only episodic MDPS episodes must terminate
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MC and TD

MC Evaluation

Goal: learn Vπ from episodes under policy π

S1,A1,R2, ..., Sk ∼ π

Total discounted reward

Gt = Rt+1 + γRt+2 + ... + γT−1RT

Value function
Vpi(s) = Eπ[Gt |St = s]

Monte-Carlo policy evaluation uses empirical mean return
instead of expected return
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MC and TD

First-Visit Monte-Carlo Policy Evaluation

To evaluate state s

The first time-step t that state s is visited in each episode

N(s) = N(s) + 1

S(s) = S(s) + Gt

V (s) = S(s)/N(s)

By law of large numbers V (s)→ V π(s) as N(s)→∞
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MC and TD

Incremental Mean
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MC and TD

Update V (s) incrementally after episode S1,A1,R2, ..., ST

For each state St with return Gt

N(St) = N(St) + 1

V (St) = V (St) +
1

N(St)
(Gt − V (St))

In non-stationary problems: running mean

V (St) = V (St) + α(Gt − V (St))
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MC and TD

Temporal-Difference Learning

TD learns from episodes

model-free

incomplete episodes, bootstrappping

Update a guess towards a guess
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MC and TD

MC and TD

Goal: learn Vπ online from experience under policy π

Incremental every-visit MC

V (St) = V (St) + α(Gt − V (St))

Simplest TD : TD(0)

Update V (St) toward estimated return Rt+1 + γV (St+1)

V (St) = V (St) + α(Rt+1 + γV (St+1)− V (St))

Rt+1 + γV (St+1) - TD target
δt = Rt+1 + γV (St+1 − V (St) - TD error

DOROZHKO Anton (Novosibirsk State University)Model-Free Q-learning with MC and TD 17 May 20, 2020 13 / 24



MC and TD

Driving Home Example
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MC and TD

MC vs TD
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MC and TD

Advantages and Disadvantages

TD can learn before knowing the final outcome

TD learn after each step
MC must end the episode

TD can learn without the final outcome

TD - incomplete sequences
TD - continuing envs
MC - complete sequences
MC - only episodic envs
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MC and TD

Advantages and Disadvantages (2)

MC has high variance, zero bias

Good convergence

Not sensitive to initial value

Simple

TD has low variance, some bias

More efficient than MC

TD(0) converges to Vπ

(not always for function approximation)

Sensitive to initial value
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MC and TD

Advantages and Disadvantages (3)

TD exploits Markov property

Usually more efficient in Markov envs

MC does not exploit Markov property

Usually more effective in non-Markov envs
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MC and TD

MC Backup

V (St)← V (St) + α(Gt − V (St))
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MC and TD

TD Backup

V (St)← V (St) + α(Rt+1 + γV (St+1)− V (St))
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MC and TD

DP Backup

V (St)← E[Rt+1 + γV (St+1)]
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MC and TD

Bootstrapping and Sampling

Bootstrapping update involves an estimate

MC

7

DP

3

TD

3

Sampling update sample an expectation

MC

3

DP

7

TD

3
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MC and TD

Unified View of RL
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MC and TD

Value and Policy Iteration Lab

https://bit.ly/2JVv6rc
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