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Framework

MAB is one of the frameworks for algorithms that make decisions
over time under uncertainty
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Examples in MA®

ogent? S AZ 4{;

© News website : a new user arrives, website picks an article_ to

show, observes, user clicks, Goal: maximize the total number of
! }_.————~7 k)
clicks ® " Contulg A Pye Cowesd

(2 ] Dynami&pricing : an!apgwsstbg;eg customer arrives, the store %
~—> chooses the price, the customer buys or leaves forever GoaI
maximize the total profit q@4{%% ¥ L Pr
© Investment : each morning choose one stock to |nve|n ?h’?‘
the end of the day, observe the change in value for each stock.
Goal: maximize the total wealth
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Framework

MAB unifies these examples.
Basic version:

@ K possible actions, a.k.a arms at each time
@ T rounds
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Connection to MDP

Definition
A Markov Decision Process is a tuple (S, A4,P,R,7)

@ S is-a-space-of states o t‘/’ﬁz“’% /or rongj 4 WA

@ A is a space of actions
D i sTorobabil
a
— P =PSr=s S =5Ar= 4]

@ R is a reward function :
‘\_\_//’-J

@i: E[RH—IMa Ar = 3

@ v is a discount factor, v € [0, 1]

4

DOROZHKO Anton (Novosibirsk State Univq Multi Armed Bandits

TIMNE KEAL OvioiNeE

May 30, 2020 6/26



Examples MABs

Example ‘ Action ‘ Reward

News website an article to display | 1 if clicked, 0 otherwise
Dynamic pricing | a price to offer p is sale, 0 otherwise
Ivestment a stock to invest change in value during the day

Novosibirsk
State
University

*THE REAL SCIENCE

DOROZHKO Anton (Novosibirsk State Univq Multi Armed Bandits May 30, 2020 7/26



Exploration / Exploitation

@ observe reward only for chosen arm, not for all
@ needs to explore
JIEEES LD SAPIOTE

o explore = try different arms to get new information

@ make optimal neaf-term decisions based on available info -
exploitation
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Exploration vs Exploitation

TRADEOFF
learn which arm is the best, but not spend much time learning
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More complex MABs Feedback

Auxiliary feedback : other than the reward for chosen arm

Example Auxiliary feedback ‘ Reward for any other arm?
) News website N/A no
2) Dynamic pricing | sale =>sale at any lower price yes, for some arms
no sale =>no sale for higher price
Qvestment change in value for all stocks yes, for all arms

@ bandit feedback : reward for only the chosen arm
o full feedback : reward for all arms, that can be chosen
State
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More complex MABs Reward doan¥
'?\?_ '{7; $- (‘f '"l r[\wx r‘nW ‘ 'AS
gu&w“v—{j N0 O = sstnbto

A, 9L & Ry QY
@ /ID rewards : the reward for each arm is drawn from fixed
distribution that depends on the arm, but not on the round t

@ Adversarial rewards: rewards can be arbitrary, as if they are
chosen by "adversary” to fool the agent

o Constrained adversary: as Adversarial rewards 4+ some
constraints. (e.g. cannot change much from one round to
another, ... )

@ Stochastic rewards : rewards evolves over time as random
Jtocnastic rev =VOIVES Over time

process, e.g. random walk.
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More complex MAB Contexts
gz; 0 S =S O

Contextual MABs Contexqual Band, X —> A

each round, agent can observe some context for each action
goal: learn the best policy which maps context to arms, while not

spending much time learning
5 .« $\
e B

Example ‘ Context

News website user location and demographics

Dynamic pricing | customer's device, location, ...

Investments earning multipliers, state of the company, ...
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More examples

Application domain Action Reward

—> medical trials which drug to prescribe health outcomg
web design font color or page layout #clicks i{}-/&
content optimization | which item/article to emphasize #clicks ’

recommender systems

which movie to watch

1 if follows recommendation

datacenter design

which server to route the job to

job completion time

robot control

a "strategy” for a given task

job completion time

—s>radio networks

which radio frequency to use ?

1 if successful transmission

crowdsourcing

DOROZHKO Anton (Novosibirsk State Univq

which task to give to which workers,
at which price
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1 if task completed
at sufficient quality
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Stochastic Bandits

Dernowlly % ondib

@ Given: K arms, T rounds [~ b&"}q Uw Al,[)d?‘
@ at each round t € [T] PO_ r=4
v

@ agent picks arm a;
@ agent observes reawrd r; € [0, 1] for the chosen arm ],?% =0

@ Goal: maximize total reward over T rounds

I
hax 2 [+
=4
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Notation

aehion

@ arms a, rounds t

@ mean reward of arm a : u(a) = E[D,]
@ best mean reward p* = max,u(a)

o difference / gap of arm a: A(a) = p* — p(a)

~————
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Regret : Motivation

@ How do we argue if agent is doing a good job 7
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Regret : Motivation

@ How do we argue if agent is doing a good job 7

o Different tasks will have different rewards
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Regret : Motivation

@ How do we argue if agent is doing a good job 7
o Different tasks will have different rewards

@ Some problems have inherently higher rewards
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Regret : Motivation

@ How do we argue if agent is doing a good job 7

o Different tasks will have different rewards

@ Some problems have inherently higher rewards

e Standard approach - compare to the best-arm benchmark

* = e

T
s
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Regret : Definition

Definition
Regret .at round T is a difference between the expected reward of
always playing and optimal arm and the algorithm’s cumulative

reward:
R(T) =T =) _n(a)
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: 4
Explore First T N0 D

VN yheps
é%m\—

Q( Exploration phasedtry each arm N times =<—

@ Select the arm 3 with the highest average reward (break ties
arbitrarily)

© (Exploitation phase: play arm 3 in all the remaining rounds

N is parameter T VN

=
AT T N * Lo
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Hoeffding's inequality

XN [Q(Igi]

;\y,:)_(,;ﬂg,-,ﬂ

(|5 —E[S)]| > t) < 2exp
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Explore First regret bounds
[x—E/x[|=
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Explore First regret bounds 2

K= 2 R(T)= m*T — ?f/w(a) pit

prhmﬁon exp boitation B l,v
Loyt & Wk Y 5"
4 G
Chosen afder LéNJ’repJ Kpv 7 a
a +at y J
—_— >

(&) = J“(“) 0) > [{(a)> J1(a J— ()
M (o %) —ﬂ(a) < r(a)+r(a”) = 0(@ wﬁx/
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Regret minimization

Explore First regret bounds conclusion W e T

K(Tj M+ O(V XT‘) = bk K(Vj wr'f

Explore-first achieves regret N = @: /V 7
E[R(T)] *? x €K log T)"/*) N=T %ﬂ
]

Observations:

@ Performance of exploration phase is terrible
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Explore First regret bounds conclusion

Explore-first achieves regret
E[R(T)] < T*? x O(K log T)*/3

Observations:

@ Performance of exploration phase is terrible

@ It's better to spread exploration more uniformly over time.
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Explore First regret bounds conclusion
(lewed 2 Advors N fpmes ench —s a¥

Explore-first achieves regret
E[R(T)] < T*? x O(K log T)*/3

Observations:

@ Performance of exploration phase is terrible
@ It's better to spread exploration more uniformly over time.

o E.g. with e-Greedy exploration
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e-Greedy exploration

for each roundt = 1,2, ... do
Toss a coin with success probability €;;
if success then
| explore: choose an arm uniformly at random
S
else
| exploit: choose the arm with the highest average reward so far
d
en

Algorithm 1.2: Epsilon-Greedy with exploration probabilities (€1, €2, .. .).
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e-Greedy exploration regret

all
Explore-first achieves regret + 5
E[R(T)] < T*? x O(K log T)*/3 7
V

e-Greedy exploration regret with ¢ = t7/3. (K log t)}/3 <

E[R(t)] < t2* x O(K log t)'/3 <
for each round t
N Novosibirsk
State
University
*THE REAL SCIENCE

DOROZHKO Anton (Novosibirsk State Univq Multi Armed Bandits May 30, 2020 24 /26



2
@ e-greedy regret grows linearly 7 /3° 0
e UCB and Thompson sampling grows with log(T)
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Hoolfeling's jneg N
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Optimism in face of uncertainty

* Policy:

Ut &

- Compute 95% upper confidence bound for each a
Zo JhpeT LR ot
- Take action with highest confidence bound
- Adjust: change 95% to more/less
——
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