Multi Armed Bandits

DOROZHKO Anton

Novosibirsk State University

May 30, 2020

DOROZHKO Anton (Novosibirsk State Unive

Multi Armed Bandits

May 30, 2020 1 / 26

Outline

3 Regret minimization

DOROZHKO Anton (Novosibirsk State Unive

Multi Armed Bandits

May 30, 2020 2 / 26

Framework

MAB is one of the frameworks for algorithms that make decisions over time under uncertainty

DOROZHKO Anton (Novosibirsk State Unive

Multi Armed Bandits

May 30, 2020 3 / 26

in MAB

agent? X A? R?

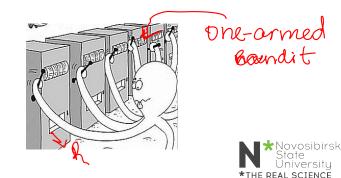
Examples

- News website : a new user arrives, website picks an article to show, observes user clicks, Goal: maximize the total number of clicks
- Dynamic pricing : an app store, customer arrives, the store for the price, the customer buys or leaves forever. Goal: maximize the total profit
 A 10, P 1
 - Investment : each morning choose one stock to invest \$. In \$²?
 the end of the day, observe the change in value for each stock.
 Goal: maximize the total wealth

Framework

MAB unifies these examples. Basic version:

- K possible actions, a.k.a arms at each time
- T rounds



Connection to MDP

Definition

- A Markov Decision Process is a tuple $(\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma)$
 - S is a space of states ho i tates / or only 1 MAB
 - $\bullet \ \mathcal{A}$ is a space of actions
 - \mathcal{P} is a transition probability

$$-\mathcal{P}_{ss'}^a - \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$$

• \mathcal{R} is a reward function :

$$\mathcal{R}^a_{\mathbf{x}} = \mathbb{E}[R_{t+1} | \mathbf{S}, \mathbf{A}_t = \mathbf{a}]$$

• γ is a discount factor, $\gamma \in [0,1]$

Examples MABs

Example	Action	Reward
News website	an article to display	1 if clicked, 0 otherwise
Dynamic pricing	a price to offer	p is sale, 0 otherwise
lvestment	a stock to invest	change in value during the day

DOROZHKO Anton (Novosibirsk State Unive

Multi Armed Bandits

May 30, 2020 7 / 26

Exploration / Exploitation

- observe reward only for chosen arm, not for all
- needs to **explore**
- $\bullet \ explore = try \ different \ arms \ to \ get \ new \ information$
- make optimal neat-term decisions based on available info exploitation

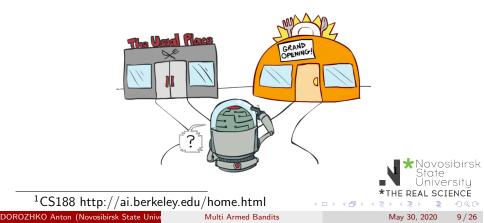
DOROZHKO Anton (Novosibirsk State Unive

May 30, 2020 8 / 26

Exploration vs Exploitation

TRADEOFF

learn which arm is the best, but not spend much time learning



More complex MABs Feedback

Auxiliary feedback : other than the reward for chosen arm

Example	Auxiliary feedback	Reward for any other arm?
News website	N/A	no
Dynamic pricing	sale $=>$ sale at any lower price	yes, for some arms
•	no sale $=>$ no sale for higher price	
3 vestment	change in value for all stocks	yes, for all arms

- bandit feedback : reward for only the chosen arm
- full feedback : reward for all arms, that can be chosen
- *partial feedback* : only for some arms

Definition

- *IID rewards* : the reward for each arm is drawn from fixed distribution that depends on the arm, but not on the round t
- Adversarial rewards: rewards can be arbitrary, as if they are chosen by "adversary" to fool the agent
- *Constrained adversary*: as Adversarial rewards + some constraints. (e.g. cannot change much from one round to another, ...)
- *Stochastic rewards* : rewards evolves over time as random process, e.g. random walk.

identical independent distributions

More complex MAB Contexts

$$\mathcal{R}_{2}; \pi: S \to \alpha$$

Contextual bands to 53X -> a

each round, agent can observe some **context** for each action goal: learn the best **policy** which maps context to arms, while not spending much time learning

Example	Context	
News website	user location and demographics	
Dynamic pricing	customer's device, location,	
Investments	earning multipliers, state of the company,	

DOROZHKO Anton (Novosibirsk State Unive

Contextual MABs

May 30, 2020 12 / 26

More examples

	Application domain	Action	Reward
->	medical trials	which drug to prescribe	health outcom
_	web design	font color or page layout	#clicks
	content optimization	which item/article to emphasize	#clicks
	recommender systems	which movie to watch	1 if follows recommendation
_	datacenter design	which server to route the job to	job completion time
	robot control	a "strategy" for a given task	job completion time
-	radio networks	which radio frequency to use ?	1 if successful transmission
	crowdsourcing	which task to give to which workers,	1 if task completed
		at which price	at sufficient quality

DOROZHKO Anton (Novosibirsk State Unive

May 30, 2020 13 / 26

Stochastic Bandits

beenpulli bandit

- Given: K arms, T rounds
- at each round $t \in [T]$
- Siven: K arms, T rounds $F_t \sim Bernelli distributiont each round <math>t \in [T]$ P_{0i} Image a gent picks arm a_t P_{0i} Image a gent observes reawrd $r_t \in [0, 1]$ for the chosen arm $J J_{0i}$

max = 1-

Goal: maximize total reward over T rounds

yovosibirsk F REAL SCIENCE

Notation

action

- arms a, rounds t
- mean reward of arm $a : \mu(a) = \mathbb{E}[D_a]$
- best mean reward $\mu^* = max_a\mu(a)$
- difference / gap of arm $a : \Delta(a) = \mu^* \mu(a)$

DOROZHKO Anton (Novosibirsk State Unive

May 30, 2020 15 / 26

• How do we argue if agent is doing a good job ?

DOROZHKO Anton (Novosibirsk State Unive

Multi Armed Bandits

May 30, 2020 16 / 26

- How do we argue if agent is doing a good job ?
- Different tasks will have different rewards

DOROZHKO Anton (Novosibirsk State Unive

Multi Armed Bandits

May 30, 2020 16 / 26

- How do we argue if agent is doing a good job ?
- Different tasks will have different rewards
- Some problems have inherently higher rewards

DOROZHKO Anton (Novosibirsk State Unive

- How do we argue if agent is doing a good job ?
- Different tasks will have different rewards
- Some problems have inherently higher rewards
- Standard approach compare to the best-arm benchmark $\mu^* \cdot T$ $\mathcal{M}^* = \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{A}$

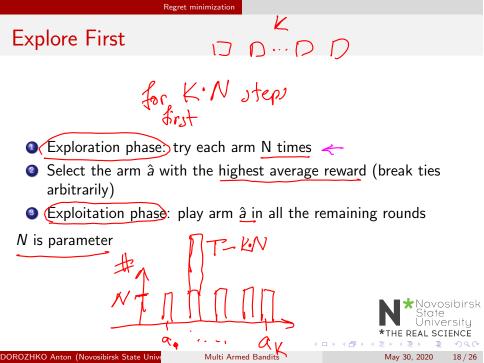
Regret : Definition

Definition

Regret at round T_{I} is a difference between the expected reward of always playing and optimal arm and the algorithm's cumulative reward: T

$$R(T) = (\mu^*) \cdot I - \sum_{t=1}^{r} \mu(a_t)$$
realized
$$R(T) = (\mu^*) \cdot I - \sum_{t=1}^{r} \mu(a_t)$$
Respected
$$R(T) = (\mu^*) \cdot I - \sum_{t=1}^{r} \mu(a_t)$$

DOROZHKO Anton (Novosibirsk State Univ



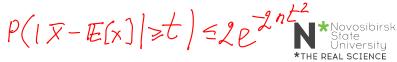
Hoeffding's inequality

 $X \sim [a_{i}, b_{i}]$

A B > A B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 $S_n = \frac{X_1 + X_2 \dots K_N}{N}$

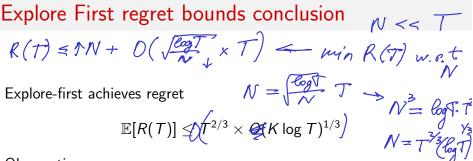
 $P(|S_n - E[S_n]| \ge t) \le 2 \exp\left(-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right).$ for bernoulli $\alpha_i = 0$?? $b_{i} = 1$



Explore First regret bounds $P(|X - E[x]| \ge t)$ Jy(a), Jy(a≯) sze-Int² Pi B. fr M(qi) = P2 for B(p) compute after exploration $P\{1|\overline{M}(a) - M(a)\} \leq \Gamma(a)\} \geq 1 - 2e^{-2Tr(a)}$ $\Gamma(\alpha) = \sqrt{\frac{\log T}{N}}$ $\geq 1 - \frac{2}{T^4}$ suppose "clean event" $f'(a) - r(a) \leq \overline{f'(a)} \leq f'(a) + r(a) \mathbf{N}$ *Novosibirsk State $f'(a) - r(a) \leq \overline{f'(a)} \leq f'(a) + r(a) \mathbf{N}$ *The real science *The real science

Explore First regret bounds 2

19⁻³-J-Z-M(a) exploitation M best a maxju R(T) =exploration K=2, Chosen after KN steps KN $a \neq a^{\times}$ $\frac{\alpha + \alpha}{\gamma(a) > \gamma(a^*)} \stackrel{\checkmark}{\mu(a) + r(a) > \overline{\gamma(a)} > \overline{\gamma(a)} > \overline{\gamma(a^*)} - r(a^*)$ $\mathcal{M}(a^*) - \mathcal{M}(a) \leq \Gamma(a) + \Gamma(a^*) = O(\sqrt{\frac{\log T}{N}})$ after $R(T) = \sum_{t=1}^{T} (jt^* - jtG) \leq N + O(\sqrt{B_gT} \cdot (T - 2N)) \sum_{t=1}^{t} Novesibirsk$ DOROZHKO Anton (Novosibirsk State Univ Multi Armed Bandits May 30, 2020 21/26



Observations:

• Performance of exploration phase is terrible

DOROZHKO Anton (Novosibirsk State Unive

Multi Armed Bandits

May 30, 2020 22 / 26

Explore First regret bounds conclusion

Explore-first achieves regret

$$\mathbb{E}[R(T)] \leq T^{2/3} imes O(K \log T)^{1/3}$$

Observations:

- Performance of exploration phase is terrible
- It's better to spread exploration more uniformly over time.

DOROZHKO Anton (Novosibirsk State Unive

May 30, 2020 22 / 26

Explore First regret bounds conclusion ployed all actions Ntimes each - 2 a*

Explore-first achieves regret

$$\mathbb{E}[R(T)] \le T^{2/3} \times O(K \log T)^{1/3}$$

Observations:

- Performance of exploration phase is terrible
- It's better to spread exploration more uniformly over time.
- E.g. with ϵ -Greedy exploration

1-E at E random a

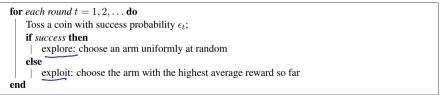
DOROZHKO Anton (Novosibirsk State Unive

May 30, 2020 22 / 26

E REAL SCIENCE

lovosibirsk

$\epsilon\text{-}\mathsf{Greedy}$ exploration



Algorithm 1.2: Epsilon-Greedy with exploration probabilities $(\epsilon_1, \epsilon_2, ...)$.

DOROZHKO Anton (Novosibirsk State Unive

$\epsilon\text{-}\mathsf{Greedy}$ exploration regret

Explore-first achieves regret

$$\mathbb{E}[R(T)] \leq T^{2/3} \times O(K \log T)^{1/3}$$

 ϵ -Greedy exploration regret with $\epsilon = t^{-1/3} \cdot (K \log t)^{1/3}$

$$\mathbb{E}[R(t)] \leq t^{2/3} imes O(K \log t)^{1/3}$$

for each round t

round

DOROZHKO Anton (Novosibirsk State Unive

May 30, 2020 24 / 26

• ϵ -greedy regret grows linearly

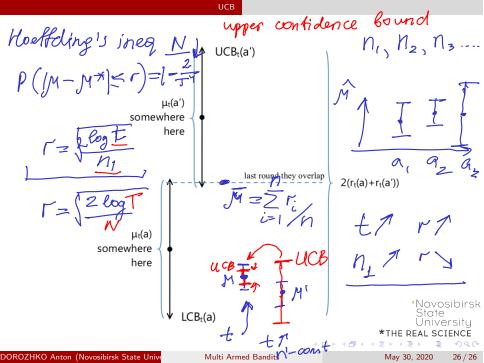
T2/3. 0

• UCB and Thompson sampling grows with log(T)

DOROZHKO Anton (Novosibirsk State Unive

Multi Armed Bandits

May 30, 2020 25 / 26



Optimism in face of uncertainty

Policy:

- Compute 95% upper confidence bound for each a
- Take action with highest confidence bound
- Adjust: change 95% to more/less

