Multi Armed Bandits

DOROZHKO Anton

Novosibirsk State University

May 30, 2020

Outline

- Motivation
- Definition
- Regret minimization
- 4 ϵ -Greedy
- UCB

Framework

MAB is one of the frameworks for algorithms that make decisions over time under uncertainty

Examples

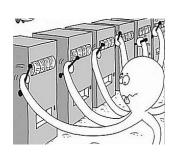
- News website: a new user arrives, website picks an article to show, observes user clicks. Goal: maximize the total number of clicks
- Oynamic pricing: an app store, customer arrives, the store chooses the price, the customer buys or leaves forever. Goal: maximize the total profit
- Investment : each morning choose one stock to invest \$. In the end of the day, observe the change in value for each stock. Goal: maximize the total wealth

Framework

MAB unifies these examples.

Basic version:

- K possible actions, a.k.a arms at each time
- T rounds



Connection to MDP

Definition

A Markov Decision Process is a tuple (S, A, P, R, γ)

- ullet ${\cal S}$ is a space of states
- ullet $\mathcal A$ is a space of actions
- ullet ${\cal P}$ is a transition probability

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$$

ullet $\mathcal R$ is a reward function :

$$\mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$$

• γ is a discount factor, $\gamma \in [0,1]$

Examples MABs

Example	Action	Reward
News website	an article to display	1 if clicked, 0 otherwise
Dynamic pricing	a price to offer	p is sale, 0 otherwise
lvestment	a stock to invest	change in value during the day

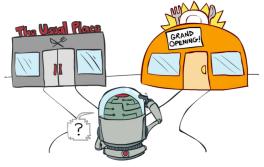
Exploration / Exploitation

- observe reward only for chosen arm, not for all
- needs to explore
- explore = try different arms to get new information
- make optimal neat-term decisions based on available info exploitation

Exploration vs Exploitation

TRADEOFF

learn which arm is the best, but not spend much time learning



More complex MABs **Feedback**

Auxiliary feedback: other than the reward for chosen arm

Example	Auxiliary feedback	Reward for any other arm?
News website	N/A	no
Dynamic pricing	sale =>sale at any lower price	yes, for some arms
	no sale =>no sale for higher price	
lvestment	change in value for all stocks	yes, for all arms

- bandit feedback : reward for only the chosen arm
- full feedback: reward for all arms, that can be chosen
- partial feedback : only for some arms

More complex MABs Reward

- IID rewards: the reward for each arm is drawn from fixed distribution that depends on the arm, but not on the round t
- Adversarial rewards: rewards can be arbitrary, as if they are chosen by "adversary" to fool the agent
- Constrained adversary: as Adversarial rewards + some constraints. (e.g. cannot change much from one round to another, ...)
- Stochastic rewards: rewards evolves over time as random process, e.g. random walk.

More complex MAB **Contexts**

Contextual MABs each round, agent can observe some **context** for each action goal: learn the best **policy** which maps context to arms, while not spending much time learning

Example	Context
News website	user location and demographics
Dynamic pricing	customer's device, location,
Investments	earning multipliers, state of the company,

More examples

Application domain	Action	Reward
medical trials	which drug to prescribe	health outcom
web design	font color or page layout	#clicks
content optimization	which item/article to emphasize	#clicks
recommender systems	which movie to watch	1 if follows recommendation
datacenter design	which server to route the job to	job completion time
robot control	a "strategy" for a given task	job completion time
radio networks	which radio frequency to use ?	1 if successful transmission
crowdsourcing	which task to give to which workers,	1 if task completed
	at which price	at sufficient quality

Stochastic Bandits

- Given: K arms, T rounds
- at each round $t \in [T]$
 - lacktriangle agent picks arm a_t
 - ② agent observes reawrd $r_t \in [0,1]$ for the chosen arm
- Goal: maximize total reward over T rounds

Notation

- arms a, rounds t
- mean reward of arm a : $\mu(a) = \mathbb{E}[D_a]$
- best mean reward $\mu^* = max_a\mu(a)$
- difference / gap of arm a : $\Delta(a) = \mu^* \mu(a)$

• How do we argue if agent is doing a good job?

- How do we argue if agent is doing a good job?
- Different tasks will have different rewards

- How do we argue if agent is doing a good job?
- Different tasks will have different rewards
- Some problems have inherently higher rewards

- How do we argue if agent is doing a good job?
- Different tasks will have different rewards
- Some problems have inherently higher rewards
- \bullet Standard approach compare to the best-arm benchmark $\mu^* \cdot T$

Regret: Definition

Definition

Regret at round T is a difference between the expected reward of always playing and optimal arm and the algorithm's cumulative reward:

$$R(T) = \mu^* \cdot T - \sum_{t=1}^T \mu(a_t)$$

Explore First

- Exploration phase: try each arm N times
- Select the arm â with the highest average reward (break ties arbitrarily)
- Exploitation phase: play arm â in all the remaining rounds

N is parameter

Hoeffding's inequality

$$P(|S_n - \mathrm{E}[S_n]| \geq t) \leq 2 \exp\left(-\frac{2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right).$$

Explore First regret bounds

Explore First regret bounds 2

May 30, 2020

Explore First regret bounds conclusion

Explore-first achieves regret

$$\mathbb{E}[R(T)] \le T^{2/3} \times O(K \log T)^{1/3}$$

Observations:

Performance of exploration phase is terrible

Explore First regret bounds conclusion

Explore-first achieves regret

$$\mathbb{E}[R(T)] \le T^{2/3} \times O(K \log T)^{1/3}$$

Observations:

- Performance of exploration phase is terrible
- It's better to spread exploration more uniformly over time.

Explore First regret bounds conclusion

Explore-first achieves regret

$$\mathbb{E}[R(T)] \le T^{2/3} \times O(K \log T)^{1/3}$$

Observations:

- Performance of exploration phase is terrible
- It's better to spread exploration more uniformly over time.
- E.g. with ϵ -Greedy exploration

ϵ -Greedy exploration

Algorithm 1.2: Epsilon-Greedy with exploration probabilities $(\epsilon_1, \epsilon_2, ...)$.

ϵ -Greedy exploration regret

Explore-first achieves regret

$$\mathbb{E}[R(T)] \le T^{2/3} \times O(K \log T)^{1/3}$$

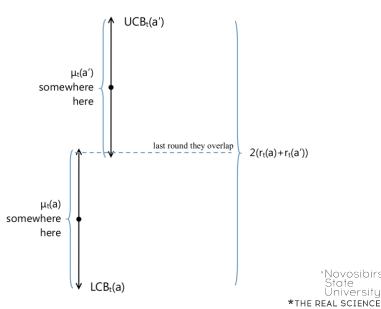
 ϵ -Greedy exploration regret with $\epsilon = t^{-1/3} \cdot (K \log t)^{1/3}$

$$\mathbb{E}[R(t)] \le t^{2/3} \times O(K \log t)^{1/3}$$

for each round t

24 / 26

- ϵ -greedy regret grows linearly
- UCB and Thompson sampling grows with log(T)



'Novosibirsk State University

Optimism in face of uncertainty

- · Policy:
 - Compute 95% upper confidence bound for each a
 - Take action with highest confidence bound
 - Adjust: change 95% to more/less

