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Motivation

Framework

MAB is one of the frameworks for algorithms that make decisions
over time under uncertainty
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Motivation

Examples

1 News website : a new user arrives, website picks an article to
show, observes user clicks. Goal: maximize the total number of
clicks

2 Dynamic pricing : an app store, customer arrives, the store
chooses the price, the customer buys or leaves forever. Goal:
maximize the total profit

3 Investment : each morning choose one stock to invest $ . In
the end of the day, observe the change in value for each stock.
Goal: maximize the total wealth
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Definition

Framework

MAB unifies these examples.
Basic version:

K possible actions, a.k.a arms at each time

T rounds
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Definition

Connection to MDP

Definition

A Markov Decision Process is a tuple (S,A,P ,R, γ)

S is a space of states

A is a space of actions

P is a transition probability

Pa
ss′ = P[St+1 = s ′|St = s,At = a]

R is a reward function :

Ra
s = E[Rt+1|St = s,At = a]

γ is a discount factor, γ ∈ [0, 1]
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Definition

Examples MABs

Example Action Reward
News website an article to display 1 if clicked, 0 otherwise
Dynamic pricing a price to offer p is sale, 0 otherwise
Ivestment a stock to invest change in value during the day
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Definition

Exploration / Exploitation

observe reward only for chosen arm, not for all

needs to explore

explore = try different arms to get new information

make optimal neat-term decisions based on available info -
exploitation
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Definition

Exploration vs Exploitation

TRADEOFF
learn which arm is the best, but not spend much time learning

1

1CS188 http://ai.berkeley.edu/home.html
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Definition

More complex MABs Feedback

Auxiliary feedback : other than the reward for chosen arm

Example Auxiliary feedback Reward for any other arm?

News website N/A no
Dynamic pricing sale =>sale at any lower price yes, for some arms

no sale =>no sale for higher price
Ivestment change in value for all stocks yes, for all arms

bandit feedback : reward for only the chosen arm

full feedback : reward for all arms, that can be chosen

partial feedback : only for some arms
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Definition

More complex MABs Reward

IID rewards : the reward for each arm is drawn from fixed
distribution that depends on the arm, but not on the round t

Adversarial rewards: rewards can be arbitrary, as if they are
chosen by ”adversary” to fool the agent

Constrained adversary : as Adversarial rewards + some
constraints. (e.g. cannot change much from one round to
another, ... )

Stochastic rewards : rewards evolves over time as random
process, e.g. random walk.
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Definition

More complex MAB Contexts

Contextual MABs
each round, agent can observe some context for each action
goal: learn the best policy which maps context to arms, while not
spending much time learning

Example Context
News website user location and demographics
Dynamic pricing customer’s device, location, ...
Investments earning multipliers, state of the company, ...
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Definition

More examples

Application domain Action Reward
medical trials which drug to prescribe health outcom
web design font color or page layout #clicks
content optimization which item/article to emphasize #clicks
recommender systems which movie to watch 1 if follows recommendation
datacenter design which server to route the job to job completion time
robot control a ”strategy” for a given task job completion time
radio networks which radio frequency to use ? 1 if successful transmission
crowdsourcing which task to give to which workers, 1 if task completed

at which price at sufficient quality
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Regret minimization

Stochastic Bandits

Given: K arms, T rounds

at each round t ∈ [T ]
1 agent picks arm at
2 agent observes reawrd rt ∈ [0, 1] for the chosen arm

Goal: maximize total reward over T rounds
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Regret minimization

Notation

arms a, rounds t

mean reward of arm a : µ(a) = E[Da]

best mean reward µ∗ = maxaµ(a)

difference / gap of arm a : ∆(a) = µ∗ − µ(a)
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Regret minimization

Regret : Motivation

How do we argue if agent is doing a good job ?

Different tasks will have different rewards

Some problems have inherently higher rewards

Standard approach - compare to the best-arm benchmark
µ∗ · T
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Regret minimization

Regret : Definition

Definition

Regret at round T is a difference between the expected reward of
always playing and optimal arm and the algorithm’s cumulative
reward:

R(T ) = µ∗ · T −
T∑
t=1

µ(at)
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Regret minimization

Explore First

1 Exploration phase: try each arm N times

2 Select the arm â with the highest average reward (break ties
arbitrarily)

3 Exploitation phase: play arm â in all the remaining rounds

N is parameter
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Regret minimization

Hoeffding’s inequality

P(|Sn − E[Sn]| ≥ t) ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.
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Regret minimization

Explore First regret bounds
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Regret minimization

Explore First regret bounds 2
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Regret minimization

Explore First regret bounds conclusion

Explore-first achieves regret

E[R(T )] ≤ T 2/3 × O(K logT )1/3

Observations:

Performance of exploration phase is terrible

It’s better to spread exploration more uniformly over time.

E.g. with ε-Greedy exploration
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ε-Greedy

ε-Greedy exploration
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ε-Greedy

ε-Greedy exploration regret

Explore-first achieves regret

E[R(T )] ≤ T 2/3 × O(K logT )1/3

ε-Greedy exploration regret with ε = t−1/3 · (K log t)1/3

E[R(t)] ≤ t2/3 × O(K log t)1/3

for each round t
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UCB

ε-greedy regret grows linearly

UCB and Thompson sampling grows with log(T )

DOROZHKO Anton (Novosibirsk State University) Multi Armed Bandits May 30, 2020 25 / 26



UCB
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UCB
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